将1.5 mL样品转移到1.5 mL微输出管中,并以13,000 rpm离心3分钟。丢弃上清液。如果单元格的量不够,请重复步骤1。加入300 µL缓冲液CL(未提供),并通过涡旋充分混合。在90°C下孵育15分钟。短暂旋转以去除盖子内部的任何滴剂。在室温下孵育2分钟。加入20 µL蛋白酶K溶液,并简要涡旋混合。在60°C下孵育10分钟,然后短暂旋转以去除盖子内部的任何滴剂。将20 µL蛋白酶K溶液分配到1 st(7th)。将10 µL的RNase A至3 rd(9 th)处分。将多达200 µL的液体样品转移到1 st(7 th)。
细胞活力评估使用细胞计数试剂盒-8(CCK-8;Beyotime)评估PPV对PK-15细胞活力的影响。将细胞接种到96孔板中,每孔约10,000个细胞。孵育4小时后,更换培养基。随后,设置3个没有细胞的空白孔,保留3个有未感染细胞的孔(对照),向另外3个有细胞的孔中加入1个感染复数(MOI)的PPV。继续孵育24和48小时。然后,吸出培养基,加入100μL新鲜的无血清培养基和10μL CCK-8溶液。然后将细胞在细胞培养箱中孵育1小时。使用酶标记物在 450 nm 处测量吸光度值,并使用以下公式计算细胞活力:细胞活力 (%) = [A (PPV) − A (空白)]/[A (对照) − A (空白)] X 100。
图4:将HELA细胞接种在苯酯96孔微孔板(15,000个细胞/孔)中,并在37°C下孵育48H,5%CO 2孵育。活细胞用现象641线粒体染色(0.5 µm)在37°C下染色30分钟,然后固定并透化。接下来,将细胞与细胞绘画混合物孵育,其中包括现象512核酸染色(3 µm),现象Hoechst 33342核染色(5 µg/mL),势氟568-腓罗(33 nm),33 nm),现象488 -contovue fluor 488 -contavue fluor 488 -contavue a(contavue fluor a fluor fulor a fluor a fluor)a(100 µgla)an(100 µL)5和m。最小在RT。在Operetta CLS高气结分析系统上获取图像。
图1:具有外显子组2.5富集工作流程的Illumina®DNA准备以及完成每个步骤所需的时间。实心蓝色块表示甲板的孵化,白色块表示需要在Sciclone NGSX工作站上脱落热循环孵育的步骤。所有孵育均在Sciclone NGSX IQ Workstation上进行。手动完成(在固体绿色块中表示)。
通过向细胞中添加RIPA裂解缓冲液(ServiceBio)提取总蛋白质。蛋白浓度,并调整蛋白质浓度,以使它们之间在不同组之间保持一致。使用SDS-PAGE分离蛋白质,并转移到PVDF膜(美国Billerica,美国)。 初级抗体TFRC(1:10000),ACSL4(1:10000),GPX4(1:5000),FTH1(1:2000)和GAPDH(1:500)在4°C下孵育12小时。 这些抗体是从英国剑桥市ABCAM获得的。 使用1×TBST从PVDF膜表面取出初级抗体后,将山羊抗兔二级抗体(1:10000,ServiceBio)在室温下孵育12小时。 通过化学发光检测蛋白表达,并处理灰度值,并使用图像J. 计算相对蛋白表达。蛋白质,并转移到PVDF膜(美国Billerica,美国)。初级抗体TFRC(1:10000),ACSL4(1:10000),GPX4(1:5000),FTH1(1:2000)和GAPDH(1:500)在4°C下孵育12小时。这些抗体是从英国剑桥市ABCAM获得的。使用1×TBST从PVDF膜表面取出初级抗体后,将山羊抗兔二级抗体(1:10000,ServiceBio)在室温下孵育12小时。蛋白表达,并处理灰度值,并使用图像J.
摘要:对骨再生的可生物降解支架的兴趣日益增加,需要研究适合脚手架形成的新材料。聚(乳酸)(PLA)是一种通常用于生物医学工程的聚合物,例如在组织工程中作为可生物降解的材料。但是,PLA沿其降解时间的机械行为仍未得到很好的探索。因此,需要研究在生理培养基中孵育的PLA支架的机械性能,以表明PLA的潜力被用作可生物降解的脚手架形成的材料。本研究的目的是确定孵育前后PLA支架的机械性能,并应用构造材料模型进行进一步的行为预测。由3D打印机“ Prusa I3 Mk3s”打印了两组PLA支架,并通过紫外线和乙醇溶液进行了灭菌。在DMEM(Dulbecco的改良Eagle培养基)中孵育第一套标本,为60、120和180天,以保持36.5°C的温度。在“ Mecmesin Multitest 2.5-I”测试架上进行压缩测试后,确定了支架的机械性能,并使用在两种不同的速度模式下施加的力。获得的数据曲线与超弹性材料模型拟合,用于模型适用性研究。将第二组样品在PBS(磷酸盐缓冲盐水)中孵育20周,并用于聚合物降解研究中。获得的结果表明,在预测的新骨组织形成周期中,PLA支架的机械性能在生理培养基中孵育过程中不会降低,尽管水解从一开始就开始并随时间增加。pla作为一种材料似乎适合在骨组织工程中使用,因为它允许具有高机械强度的生物相容性和可生物降解的支架,这是有效组织形成所需的。
使用 Kohl 和 Ascoli [13] 改进的间接酶联免疫吸附测定法对 IgY 浓度进行定量,并对洗涤和封闭缓冲液的体积、包被抗体的浓度、终止液的类型和微孔板读数仪的波长进行了修改。用紫外线灭菌后,用 2.5 µ g/mL 浓度的山羊抗 IgY 免疫球蛋白 G (IgG) (SAB3700195,Sigma-Aldrich) 作为捕获抗体包被微孔板。用 pH 9.6 的缓冲碳酸氢盐 (0.005 M 碳酸盐碳酸氢盐) 稀释抗体,并将微孔板在 4°C 下孵育过夜。用磷酸盐缓冲盐水和吐温-20 (PBST-20,pH 7.4) 清洗微孔板 3 次。随后用2%牛血清白蛋白(BSA)封闭微孔板(每孔100 µL),37 ℃孵育1 h,用0.05% PBST清洗微孔板3次,加入血清样品至100 µL(1:100稀释),37 ℃孵育1 h。
蛋白质的来源:带有克隆的T4 DNA连接酶基因的重组大肠杆菌菌株。单位定义:1个单位定义为将100 ng的DNA片段中的50%与粘性末端连接到50 µl 1x 1x DNA连接酶缓冲液后30分钟在23°C分子重量下孵育后所需的50%的DNA片段:55,292 DALTONS质量控制分析:使用2ffliutial serial dilitial doldutial doldiques soge。在1x DNA连接酶反应缓冲液中制作酶批次的稀释液,并添加到含有双束DNA片段和1X DNA连接酶反应缓冲液的20 µL反应中。在23°C下孵育30分钟,停止并在用溴化乙锭染色的1%琼脂糖凝胶上进行分析。蛋白浓度(OD 280)由OD 280吸光度确定。物理纯度,然后进行银色染色检测。通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。单链核酸酶在含有放射性标记的单链DNA底物的50 µL反应中确定,在37°C下孵育4小时4小时。双链外切核酸酶在50 µL反应中确定,该反应含有放射性标记的双链DNA底物和10 µL的酶溶液在37°C下孵育4小时。
养分明胶是根据以前用于检查水,污水和其他卫生重要材料的配方制备的(1)。明胶液化是肠杆菌分化的基本测试之一(2)。该培养基也可以用于水的微生物板计数。肽和HM肽B提供氮和碳源,长链氨基酸和其他生长养分,以供非养生生物生长。明胶是确定生物体产生明胶酶的能力的底物,这是一种活跃于明胶液化的蛋白水解酶。从三糖铁琼脂(M021)或克里格勒铁琼脂(M078)中使用18-24小时的纯培养物,在营养明胶中刺接,直接接种针的针头,直接向下降低了介质的深度,到距管底部大约一英寸的深度。在35±2°C下孵育包括未接种的对照24-48小时。许多物种需要长时间的孵育(3,4)才能明胶液化。明胶在20°C或较低的温度和35°C或更高温度下的液体固体。明胶液化在约28°C下,因此在35°C下进行孵育,但在冰箱中保存约2小时,然后再解释结果(3)。明胶的液化发生在表面层上,因此应注意不要摇动管子(5)。控制与每项测试一起进行,因为明胶的胶凝能力变化(3),明胶浓度也不应超过12%,因为它可以抑制生长(6)。对于水的板数,在20-22°C下进行孵育长达30天。营养明胶培养基来确定挑剔的物种和强制性厌氧菌的明胶液化。在孵育过程中以各个间隔检查管子的生长和液化。在每个间隔中,拧紧盖子并将管转移到冰箱中,以进行足够的时间,以确定是否发生了液化。