内容:平衡的端到端(TRL 2 至 7+)技术组合:• 小型航天器和分布式系统 • 通信、定位、导航和授时 • 观测系统 • 空间服务、装配和制造 • 空间可持续性
Agnikul Cosmos 是一家印度太空技术初创公司,由印度理工学院马德拉斯分校孵化,总部位于钦奈。该公司通过发射印度首枚半低温运载火箭 Agnibaan SOrTeD 实现了一个重要里程碑,该火箭搭载了世界上第一个也是唯一一个单件式 3D 打印火箭发动机,该公司拥有该发动机的专利。Agnikul 的愿景是让每个人都能进入太空,旨在实现随时随地以经济实惠的方式进行发射。Agnikul 致力于开发既经济实惠又可根据客户需求定制的运载火箭。Agnikul 团队由 200 多名工程师组成,并与印度理工学院马德拉斯分校的国家燃烧研究与发展中心 (NCCRD) 有关联。核心业务/运营领域
NASA 支持可再生能源,并将继续与海洋能源管理局 (BOEM) 合作,以限制中大西洋进一步开发对我们的发射和试验场运营的影响。NASA 与 BOEM 密切合作,就中大西洋 CA1 提供反馈,以确保任何潜在的开发都将对发射场运营产生最小影响。
这项研究由美国国家航空航天局赞助。本出版物中表达的任何意见、发现、结论或建议不一定反映为该项目提供支持的任何组织或机构的观点。共识研究报告的副本可从美国国家科学院出版社 (800) 624-6242 或 https://nap.nationalacademies.org/catalog/27519 或 nationalacademies.org/nasa-crossroads 获取。
1. 美国国家背景和太阳物理部门的职责 在过去几年中,美国白宫科技政策办公室一直在制定美国国家轨道碎片战略,该战略已编入《国家轨道碎片实施计划》,于 2022 年 7 月发布。该计划涵盖三个领域:1. 碎片减缓 2. 碎片的跟踪和表征 3. 碎片的修复 虽然 NASA 已经确定了涵盖所有这三个领域的职责,但“碎片的跟踪和表征”下的几个项目现在属于 NASA 科学任务理事会太阳物理部门的职权范围。在广泛的组织层面,NASA 已将小型轨道碎片问题确定为机构风险,并分为三个单独的风险: - 空间可持续性:轨道碎片风险 - 空间可持续性:干扰 NASA 运营风险 - 空间可持续性:空间交通管理风险 为了解决和帮助减轻这些风险,NASA 的科学任务理事会 (SMD) 指示太阳物理部 (HPD): • 开发和部署空间仪器及其他调查,以更好地限制 500 至 1000 公里高度范围内的微碎片环境; • 开发和部署空间仪器及其他调查,以便更好地预测导致轨道碎片在地球大气层中损失的自然过程;以及 • 努力将这些测量结果整合到 NASA 开展的轨道碎片活动中,特别是 NASA 约翰逊基地的轨道碎片项目办公室,并改进空间天气预报。 HPD 已与 NASA 的轨道碎片计划办公室 (ODPO) 合作,帮助解决对小型 (<3 厘米) 轨道碎片群体了解不足的问题。ODPO 是 NASA 轨道碎片工程模型 (ORDEM 3.2) 的管理者,小型 OD 群体的特征最不明显,导致模型中的不确定性最大,是航天器设计中的一个重要成本驱动因素。我们对这些致命不可追踪 (LNT) 物体的缺乏了解,目前对 NASA 在低地球轨道 (LEO) 的运行任务构成了最大威胁,当然也扩展到所有在 LEO 上活动的航天器。如果不了解环境 (SSA),就无法完全了解 OD,如果不描述碎片群体及其影响,就无法完全了解运行环境 (SSA)。所有这些最好通过利用 HPD 的相关专业知识来完成。小型自然和人造空间物体(轨道碎片 [OD}、微陨石、尘埃)与传统空间天气一起被视为构成空间工作环境 (SWE),并且是 HPD 空间天气计划的一部分。
戈达德的影响力不仅限于马里兰州格林贝尔特的校园,还包括几处关键设施。弗吉尼亚州的瓦洛普斯飞行设施支持亚轨道和轨道发射、科学气球操作和大气研究。西弗吉尼亚州的凯瑟琳·约翰逊独立验证和确认 (IV&V) 设施确保 NASA 任务中使用的软件的可靠性和安全性。其他戈达德任务在新墨西哥州的白沙试验设施和纽约的戈达德太空研究所进行。
科学技术的进步是继续在低地球轨道开展活动的首要原因,也可以说是最纯粹的原因。NASA 从在低地球轨道微重力环境中运行的时间中学到了很多东西。然而,最近发布的美国国家科学、工程和医学院 2023-2032 年太空生物和物理科学研究十年调查强调了还有许多东西需要了解。NASA 资助基础研究以满足这些十年优先事项,一些科学问题只能通过微重力环境下的实验来回答。低地球轨道通常比将实验送入太空更远的地方更具成本效益。开展这些实验需要一个包括训练有素的研究科学家和研究设施的微重力研究生态系统。
它是太空中最大的人造结构,于 1998 年发射升空。它作为宇航员的栖息地,自 2000 年以来一直有人居住。参与机构:国际空间站是美国(NASA)、俄罗斯(Roscosmos)、欧洲(ESA)、日本(JAXA)和加拿大(CSA)航天机构的联合努力。轨道:国际空间站绕地球运行的轨道距离地球约 400 公里。速度:它以每小时约 28,000 公里的速度绕地球运行,每 90 分钟绕行一周。目标:国际空间站旨在增进我们对太空和微重力的了解,支持新的科学研究,并体现国际合作。
为了实现氢经济和新的脱碳能源模式,需要降低从生产到最终使用的核心清洁氢技术的成本和效率。在生产方面,这体现在能源部的“氢能地球计划”中,即在 10 年内将氢气生产成本降至 1 美元/千克,以及区域清洁氢中心计划。使用可再生清洁电力作为原料达到这些成本指标的固有方法是使用电解。电解技术中最重要的是利用离子导电聚合物(离子聚合物)的技术,包括聚合物电解质水电解器 (PEWE)。然而,这些技术需要表现出更高的效率、(动态)性能和耐用性,以降低成本并实现商业可行性。同样,离子聚合物对于实现固定和重型应用的燃料电池 (PEFC) 至关重要。 PEWE 和 PEFC 都涉及多个组件(例如催化剂、离子聚合物、传输层、膜、板)和多个阶段,现象发生在不同的时间和长度尺度上。这些技术的关键是离子聚合物和催化剂之间的界面,而传输现象在其中起着关键作用。在本次演讲中,我们将通过劳伦斯伯克利国家实验室的最新进展(包括基于离子聚合物的水电解中心 (CIWE) 的努力)概述其中一些技术。
火星表面受到来自太阳和宇宙的高能带电粒子的轰击,与地球相比,几乎没有任何防护。由于航天机构正在计划对这颗红色星球进行载人飞行,因此人们主要担心的是电离辐射对宇航员健康的影响。将暴露量保持在可接受的辐射剂量以下对机组人员的健康至关重要。在这项研究中,我们的目标是了解火星的辐射环境,并描述保护宇航员免受宇宙辐射有害影响的主要策略。具体来说,我们使用 Geant4 数值模型研究了火星辐射场中各种材料的屏蔽特性,并通过 MSL RAD 的现场仪器测量验证了该模型的准确性。我们的结果表明,复合材料(如塑料、橡胶或合成纤维)对宇宙射线具有类似的响应,是最好的屏蔽材料。火星风化层具有中间行为,因此可以作为额外的实用选择。我们表明,最广泛使用的铝与其他低原子序数材料结合使用时可能会有所帮助。