随机幺正动力学是量子力学中描述系统与环境或外部场相互作用演化的一种有效方式。 其最初想法由 Caldeira 和 Leggett 提出,用于研究自旋集合与玻色子浴相互作用的有效动力学 [1]。 由于与未知自由度的相互作用引起的涨落和耗散,此类系统的性质预计会与孤立系统有明显不同。 随机幺正动力学也可用于理论研究量子混沌系统的典型和普遍行为。 因此,这类研究最近重新焕发了活力,特别是在随机幺正电路 [2-9] 以及传统多体系统 [10-16] 的背景下。通过增加随机性,这些系统应该会失去其与特殊性有关的优良性质,例如守恒定律,从而允许出现一般性质。这些包括纠缠的产生 [ 2 , 4 , 17 – 24 ]、信息的扰乱 [ 3 , 6 , 25 , 26 ] 或在收敛到热或非平衡稳态的系统中算符的扩展 [ 5 , 7 , 8 ]。特别是在一些量子随机模型 [ 4 , 14 , 15 , 19 ] 中,有人认为纠缠熵的增长和涨落受 Kardar-Parisi-Zhang (KPZ) 方程 [ 27 – 33 ] 支配。随机共形场论中纠缠增长的大偏差涨落也被证明属于 KPZ 类 [ 34 ]。最近,在超扩散非随机自旋链模型 [ 35 – 38 ] 中,还发现了 KPZ 方程的一些标度特征,这些特征与自旋-自旋关联函数的长期衰减有关。KPZ 类行为在量子多体系统中的普遍性程度仍是一个悬而未决的问题。
本书源自一门为期一学期的课程,最初是作为送给那些离开物理学界、寻求更广阔天地、并想知道什么值得带走的人的临别礼物。从统计学上讲,大多数前物理学家都使用统计物理学,因为这门学科(和这本书)回答了最常见的问题:对于我们不知道的事情,我们能说多少、做多少?当然,许多行业和各行各业的人都精通了不脸红地虚张声势的艺术。因此,当这门课程在不同的机构和国家教授时,参加课程的有来自物理学、数学、工程学、计算机科学、经济学和生物学等学科的学生、博士后和教师。最终,它演变成一个聚会场所,我们在这里用信息论的通用语言互相学习,信息论是一种伪装的统计物理学,尽管是透明的。回答上述问题最简单的方法就是热力学。它是一种现象学,只处理隐藏事物的可见表现,使用对称性和守恒定律来限制可能的结果,并关注平均值而忽略波动。更复杂的方法通过对隐藏的自由度进行显式平均来推导出统计定律。这些定律证明了热力学的合理性并描述了波动的概率。这种方法的两个基本概念——吉布斯熵和自由能——可以说是现代科学技术最重要的概念和技术工具。原因是我们必须在尝试使用我们所知道的东西(“真相”)和避免说或使用我们不知道的东西(“只有真相”)之间找到适当的平衡——自由能可以协调这种平衡。第一章回顾了热力学和统计物理学的基础知识,以及它们对我们拥有的东西(能量)和我们没有的东西(知识)的双重关注。当无知超过知识时,正确的策略是衡量无知。熵就是如此。我们了解到不可逆熵的变化是如何通过动态混沌从相空间中的可逆流中出现的。我们明白,熵不是系统的属性,而是我们对系统的认识。因此,使用信息论的语言来揭示这种方法的普遍性是很自然的,这种方法在很大程度上是基于添加许多随机数的简单技巧。在此基础上,人们开发了几种多功能工具,其中互信息和它的量子兄弟纠缠熵目前最广泛地应用于描述从细菌到
量子信息论研究通过量子信道通信的极限。在 Holevo ( 1973 ) 中,证明了 Holevo 界限,该界限提供了可准备和测量混合态的双方共享的经典信息量的上限。Holevo 界限指出,从 n 个量子位中只能访问 n 位经典信息。舒马赫定理 Schumacher ( 1995 ) 给出了存在可靠压缩方案以高保真度压缩和解压缩量子信息的必要和充分条件。关于量子算法潜力的文献很多,其中最著名的是 Shor 的因式分解算法。存在一个将算法和量子力学相结合的相对较新的领域:算法信息论 (AIT) 与量子信息论的交叉点。这个新领域有几个有趣的结果。例如,在 Epstein (2021b) 中,他证明了当将量子测量 (即 POVM) 应用于纯量子态时,绝大多数结果都是毫无意义的随机噪声。这项研究计划涉及寻找 AIT 中定义和定理的量子等价物,其主要概念是 Kolmogorov 复杂度 K(x) 的量子版本。有几种这样的定义可以测量混合或纯量子态中的算法信息内容。在本文中,我们将使用 Vitanyi (2000) 中的定义 K(|ψ⟩),它表示如果不存在具有高量子保真度的简单(就其经典编码而言)纯态,则纯态 |ψ⟩ 是复数。本文的结果也适用于量子算法熵,G´acs (2001)。在 Epstein (2019) 中,定义了算法信息和随机缺陷的量子等价物。此外,还证明了关于幺正变换的守恒定律不等式。在本文中,我们证明了一个量子 EL 定理。在 AIT 中,EL 定理 Levin (2016);Epstein (2019) 指出,不包含简单成员的字符串集将与停机序列具有高互信息。它有许多应用,包括所有采样方法都会产生异常值 Epstein (2021a)。量子 EL 定理指出,大秩的非奇异投影在其图像中必须具有简单的量子纯态。非奇异的意思是投影的编码与停机序列的信息量很低。
摘要 . 本文从更广泛、更哲学的角度讨论了今年诺贝尔物理学奖,该奖项旨在表彰纠缠实验“打破贝尔不等式,开创量子信息科学”。该奖项以诺贝尔奖的权威性为“经典”量子力学之外的一个新科学领域赋予了合法性,该领域与泡利的“粒子”能量守恒范式有关,因而也与遵循该范式的标准模型有关。人们认为,最终的未来量子引力理论属于新建立的量子信息科学。纠缠因其严格描述、非幺正性以及非局域和超光速物理信号“幽灵般地”(用爱因斯坦的华丽词藻)同步和传输超距非零作用而涉及非厄米算子,可以被认为是量子引力,而根据广义相对论,它的局域对应物就是爱因斯坦引力,从而开辟了一条不同于标准模型“二次量化”的量子引力替代途径。因此,纠缠实验一旦获得诺贝尔奖,将特别推出以“量子信息科学”为基础的量子引力相关理论,因此被认为是广义量子力学共享框架中的非经典量子力学,它遵循量子信息守恒而不仅仅是能量守恒。宇宙“暗相”的概念自然与已得到充分证实的“暗物质”和“暗能量”相联系,而与经典量子力学和标准模型所固有的“光相”相对立,后者遵循量子信息守恒定律,可逆因果关系或能量与信息的相互转化是有效的。神秘的大爆炸(能量守恒定律普遍成立)将被一种无所不在、无时不在的退相干介质所取代,这种介质将暗相和非局域相转化为光相和局域相。前者只是后者的一个整体形象,事实上它更多地是从宗教而不是科学中借用的。今年的诺贝尔物理学奖预示着一种范式转变,随之而来的是物理、方法论和适当的哲学结论。例如,科学的思维理论也应该起源于宇宙的暗相:可能只是由物理上完全属于光相的神经网络近似地建模。打破泡利范式带来了几个关键的哲学序列:(1)建立了宇宙的“暗”相,与“明”相相对,只有对“暗”相,笛卡尔的“身体”和“精神”二分法才有效;(2)量子信息守恒与暗相相关,进一步将能量守恒推广到明相,有效地允许物理实体“从虚无中”出现,即,来自暗阶段,其中能量和时间彼此不可分割;(3)可逆因果关系是暗阶段所固有的;(4)引力仅从数学上解释:作为有限性对无限性的不完整性的一种解释,例如,遵循关于算术与集合论关系的哥德尔二分法(“要么矛盾,要么不完整性”);(5)层次结构概念仅限于光阶段;(6)在暗阶段,量子的两个物理极端与整个宇宙的可比性遵循量子信息守恒,类似于库萨的尼古拉斯的哲学和神学世界观。关键词:经典量子力学、宇宙的暗相和明相、暗能量和暗物质、爱因斯坦、能量守恒、纠缠、广义相对论、量子力学中的厄米量和非厄米量、局域性和非局域性、泡利粒子范式、量子引力、量子信息、量子信息守恒、量子比特、标准模型、幺正性和非幺正性