– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
摘要 摘要 摘要 摘要 RFID(射频识别)是一种识别技术,在各个领域的使用越来越引起人们的极大兴趣。然而,这些 RFID 系统面临的最大挑战之一是安全性。为了确保良好的安全性并保护这些系统用户的隐私,使用了加密技术。由于 RFID 系统的特点是资源有限(内存、计算能力),因此用于这些系统的加密协议必须使用轻量级或超轻量原语。已经为 RFID 系统提出了许多加密协议。不幸的是,尽管设计和实现这些协议需要大量的时间和精力,但大多数协议都发现了漏洞和安全缺陷。在使用之前对其进行验证成为至关重要的需求。在这项工作中,我们对基于 AVISPA&SPAN 工具的密码协议的形式化验证感兴趣。我们检查了两个协议:第一个 (R 2 AP) 被证明是完美的。另一方面,第二个(HMNB)容易受到两种攻击(重放攻击和中间人攻击)。对于后者,我们提出了一项改进,事实证明可以抵抗攻击
安全多方计算(MPC)对于安全保护敏感数据至关重要。它允许两个或多个当事方共同对其私人数据进行计算,而无需透露输出以外的任何内容。因此,MPC保证了隐私和机密性等安全性。对功能的遗忘评估是加密设计中最重要的基础之一。在Rabin [1]的工作中,引入了遗忘转移(OT)的想法。ot考虑有两个方的设置:发件人和接收者。发件人有两个位s 0和s 1,而接收器只能根据他选择的b来学习一个位s b。稍后,在[2]中显示了OT可用于对任何加密函数的遗漏评估。在过去的三十年中,在基于OT的MPC协议的设计中取得了很大的进步。但是,值得注意的是,可以使用直接构造对特定类型的功能进行更有效的评估,从而绕开了对MPC的需求。考虑到这种观点,Naor等人。[3]设计了遗忘的多项式评估(OPE)。这是一个有用的原始性,它解决了在输入α上忽略评估多项式P的问题。更准确地说,OPE是两个不信任的政党之间的两党协议,其中一个政党(例如鲍勃)拥有一个私人多项式P(x),而另一个
10实施本标准或拟议标准的某些要素可能受第三方专利权的约束,包括临时专利权(此处“专利权”)。dmtf不向标准用户陈述有关此类权利的存在,也不承担承认,披露或确定任何或所有此类第三方专利权所有者或索赔人,也不对任何不完整或不准确的认同或不准确的认同或披露此类权利,所有者,所有者或索赔人。dmtf不应以任何法律理论,无论采用任何方面的任何方面或任何情况,都无法承认,披露或确定任何此类第三方专利权,或者对于该方在其产品,协议或测试程序中对标准或其成立的依赖。dmtf对任何执行此类标准的一方不承担任何责任,无论是否可以预见,对任何专利所有人或索赔人都不承担任何责任,并且如果出版后撤回或修改了标准的成本或损失,并且在出版后撤回或修改了损失,并且由任何人予以实施的任何一方无害,以任何人的索赔代理和所有所有者的索赔。
– 奥地利航天局 (ASA)/奥地利。 – 比利时联邦科学政策办公室 (BFSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间和高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。
两年后,BSCA 帮助将暴力犯罪率降至近 50 年来的最低水平。美国的凶杀案率正在以有史以来最快的速度下降。凶杀案的下降趋势始于 2022 年,此前拜登总统颁布了美国救援计划;拜登-哈里斯政府在执法、预防犯罪和干预战略方面进行了其他投资;拜登-哈里斯政府利用行政权力帮助防止枪支落入危险分子之手。在具有历史意义的 BSCA 通过和实施后,以及随着拜登-哈里斯政府开始实施这项具有历史意义的法律,下降速度进一步加快。同比比较显示,2023 年的凶杀案率降幅是近年来最大的——下降了 13%。这一拯救生命的进步在 2024 年继续。联邦调查局 (FBI) 的最新季度数据显示,与 2023 年相比,2024 年第一季度的凶杀案下降了 26%。本报告总结了实施 BSCA 的进展以及拜登-哈里斯政府将继续采取的减少枪支犯罪和拯救生命的行动。为了确保有效实施,2023 年 3 月,拜登总统发布了一项行政命令,指示联邦机构最大限度地发挥 BSCA 的好处。2023 年 9 月,他成立了有史以来第一个白宫枪支暴力预防办公室,由哈里斯副总统监督,以进一步加快 BSCA 的实施。枪支暴力仍然是一场公共卫生危机,但拜登总统和哈里斯副总统已经表明他们知道什么是有效的:投资执法部门以帮助解决暴力犯罪并追究责任人的责任,投资犯罪预防和干预战略,并阻止枪支非法流入我们的社区。BSCA 为社区提供了执行这一战略、减少枪支暴力和拯救生命的新工具。
根据第7次东盟能源前景(AEO7),石油和天然气将在2050年继续在该地区的能源供应和需求组合中占有重要份额。反对这种统治地位,东盟在2005年之前一直是净石油进口商,到2025年将遵循天然气。在过去的10年中,石油和天然气的产量也一直在下降。随着东盟对石油和天然气进口的不断依赖以及全球地缘政治的不稳定,将需要立即提供石油和天然气的供应来源,以增强东盟成员国(AMS)的能源安全。ams已根据《东盟石油安全协议》(APSA)设计了一种协调的应急机制(CERS),以增强该地区的石油安全性。CERM尚未被激活,需要进行一些调整才能进行实际操作。目前,APSA已于2023年到期,直到2025年,AMS采用了新的APSA协议。在临时扩展期间,AMS拥有并且仍在进行各种FGD,以审查所需的调整以改善机制并解决CERM和APSA激活的差距。
– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 埃及空间局 (EgSA)/埃及。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
对于安全专业人员而言,重要的是要了解如何保护大数据如何适应不断变化的安全线程,而安全线程可能会缓慢且效率低下。可以通过开发所谓的加密变色龙来解决该问题,该协议是可以根据数据和安全威胁的不同方面进行适应的安全协议。本文重点介绍此类协议,并评估它们为数据完整性和机密性提供保护的程度。本文将分析当前文献中的典型方法和适合大数据的新自适应安全概念。总体实验结果将表明,所提出的解决方案将导致对系统安全性的更快,可靠的改进。关键字:大数据,自适应安全性,加密变色龙,数据完整性,机密性。