谈到物联网,网络安全标签是全球许多地区(新加坡、英国、欧盟等)的热门话题。一个有趣的部分是标签的基准。一个明智的选择是使用现有的 NIST 8259 最低安全要求,该要求已经引起了业界的广泛关注。标签可能还会引入一个级别概念(例如 1 到 3),类似于白色家电能效等级。另一个有趣的观点是供应商将如何证明他们已经遵守了这些要求。对于较低级别,这可以通过自我声明来完成,而较高级别可能需要由 UL 或 SGS 等测试机构进行独立验证。后者需要定义测试概念并标准化测试向量以进行主观测试。这可能会变得复杂。由于较高的标签级别可能会针对更大的评估深度和更深入的测试,另一方面,范围内的物联网设备将各自具有丰富而复杂的功能。因此,每个物联网设备的工作量很大,反过来,这种方法很难扩展。
苦味酸 ( CAS 编号 88-89-1,2,4,6-三硝基苯酚,苦味硝酸 ) 是一种淡黄色、无味晶体,微溶于水(约 1.3% 重量浓度时达到饱和)。在实验室外,苦味酸主要用于炸药和烟花。在实验室中,它用于组织学应用的许多常见固定剂中。Bouin 溶液、Holland 溶液和 Gendre 溶液的主要成分都是苦味酸。在金相学应用中,苦味酸用作镁及其合金的蚀刻剂。水合后,苦味酸可以安全处理,但干燥后可能会引起爆炸。互联网上有许多拆弹小组拆除旧苦味酸瓶的报道。它也是一种有毒物质。苦味酸造成的危害要求在储存和处理时采取特殊的预防措施和做法,如下所述。
纳米技术是一种广泛应用的横截面技术,几乎在所有企业领域中都具有创新。超过300,000至400,000个直接参与欧洲纳米技术的工作岗位,供应链下方甚至还有更多的工作场所使用制造的纳米材料(EU-OSHA 2012)。因此,许多公司,尤其是中小企业(SME)处理纳米材料。出于这个原因,为与人类健康和环境兼容的可持续发展提供支持,并将这个繁荣的行业相似地利用其最大的潜力,这是一个挑战。本指南提出了一般安全策略的决定标准,并提出了针对定义的纳米材料组的特定保护措施的建议。它是基于文件,目的是为合成,测试和测量纳米材料的合作伙伴实验室提供指导,以开发参考方法和材料。
Craig Mann 先生,澳大利亚联邦警察局安非他明类兴奋剂专家应对小组组长; Chan Kee Bian 博士,马来西亚化学部麻醉品科科长; Nathan Green 博士,澳大利亚联邦警察局法医化学家; Patrick Choi 博士,澳大利亚新南威尔士州环境、气候变化和水资源部首席技术顾问; Barbara Remberg 博士,奥地利国际麻醉品管制局前体管制科高级技术顾问; Daniel Rothenfluh 博士,澳大利亚环境、水资源、遗产和艺术部助理主任; Wong Hoy Yen 先生,马来西亚顾问/药剂师; Hoang Manh Hung 博士,越南法医科学研究所高级官员; Paul Newell 先生,澳大利亚环境与保护部(西澳)高级环境官员; Héctor Bernal Contreras 先生,Coordinado Grupo Internacional-Químico,Dirección Nacional de Estupefacientes,哥伦比亚; Peter Vallely 先生,澳大利亚犯罪委员会特别调查员法医化学家; Marjorie Ungson Villanueza 女士,菲律宾缉毒局四级化学家,菲律宾。
3.1. 简介 19 3.2. 监测的一般原则 19 3.3. 空气或气体中氚的监测 21 3.3.1. 鼓泡器和被动采样器 21 3.3.2. 电离室方法 25 3.3.3. 比例计数器 30 3.3.4. HT-HTO 鉴别 31 3.3.5. 校准 33 3.3.6. 氚尘埃 34 3.4. 液体中氚的监测 34 3.4.1. 一般性讨论 34 3.4.2. 抓取样本 34 3.4.3. 液体闪烁计数 34 3.4.4. 闪烁流动池 35 3.5. 表面污染监测 36 3.5.1. 一般性讨论 36 3.5.2.涂片技术 37 3.6. 固体中氚的监测 37
随着核能民用应用的发展,人们预计钚的使用量将大幅增加。人们在从乏核燃料中分离钚的设施上投入了大量资金。然而,随着大量廉价铀矿石的发现(可作为钚的替代品用作核燃料),加上核电发展的缓慢以及开发和部署快中子增殖反应堆(预计是钚的主要用户)成本的迅速上升,分离钚的利用率未能跟上其分离速度。因此,截至 1996 年底,全球分离的民用钚库存总量超过 150 吨。本安全报告更新了 IAEA 安全丛书第 39 号《钚的安全处理》,该丛书于 1974 年出版。上一份出版物的重点是钚研究和开发设施,这些设施使用的钚数量非常有限。当时,燃料的平均燃耗比现在低得多。燃耗越高,238 Pu、240 Pu、241 Pu 和 242 Pu 的浓度就越高。此外,大量武器级钚(239Pu 含量超过 90%)已被宣布超出军事需求,这些材料也可能被添加到民用钚库存中。因此,本报告描述了同位素组成的巨大差异对储存和处理要求的影响。还描述了自《安全系列第 39 号》出版以来制定的人员暴露于辐射的更严格标准的影响。该出版物没有涉及临界性,因为它只涵盖了实验室规模的设施(钚含量少于 220 克的设施)。但是,本报告描述了现在或未来需要的拥有大量钚的设施,因此它也涉及临界性问题。此外,由于对长期储存钚的需求日益增长,本报告还涵盖了钚储存。虽然保障措施和物理安全对于钚的处理和储存非常重要,但本报告未涵盖这些问题。本报告的制定和发布是国际原子能机构扩大计划的一部分,旨在确定和处理与分离民用钚库存积累相关的问题。这是在这些领域经验最丰富的国家分享有关处理和储存钚的数据和经验的结果。负责此报告的官员是核燃料循环和废物技术司核燃料循环和材料科的 J. Finucane。
随着核能民用应用的发展,人们预计钚的使用量将大幅增加。人们在从乏核燃料中分离钚的设施上投入了大量资金。然而,随着大量廉价铀矿的发现(可作为钚的替代品用作核燃料),再加上核电发展的缓慢,以及开发和部署快中子增殖反应堆(预计是钚的主要用户)的成本迅速上升,分离钚的利用率未能跟上其分离速度。因此,截至 1996 年底,全球分离的民用钚库存总量超过 150 吨。本安全报告更新了 1974 年出版的国际原子能机构安全系列第 39 号《钚的安全处理》。上一期出版物的重点是钚研究和开发设施,这些设施使用的钚数量非常有限。当时,燃料的平均燃耗比现在低得多。燃耗越高,238 Pu、240 Pu、241 Pu 和 242 Pu 的浓度就越高。此外,大量武器级钚(239 Pu 含量超过 90%)已被宣布超过军事需求,这些材料也可能被添加到民用钚库存中。因此,本报告描述了这种同位素组成的巨大差异对储存和处理要求的影响。自《安全系列第 39 号》出版以来,制定了更严格的人员辐射暴露标准,本报告也描述了这些标准的影响。该出版物没有涉及临界性,因为它只涵盖了实验室规模的设施(钚含量少于 220 克的设施)。然而,本报告描述了目前已建成或未来需要的拥有大量钚的设施,因此它也涉及临界性问题。此外,由于对长期储存钚的需求日益增长,本报告还涵盖了钚的储存。虽然保障措施和物理安全是钚处理和储存方面非常重要的问题,但本报告未涵盖这些问题。本报告的制定和出版是原子能机构扩大计划的一部分,旨在确定和处理与分离民用钚库存积累有关的问题。这是在这些领域经验最丰富的国家分享有关钚处理和储存的数据和经验的结果。负责本报告的官员是核燃料循环和废物技术司核燃料循环和材料科的 J. Finucane。