尽管 QKD 链路可以达到传统方式无法达到的安全级别,但由于光纤损耗会随着距离的增加而呈指数级增长,因此 QKD 链路在全球范围内的实施面临着关键限制。由于量子中继器技术不够成熟,地面 QKD 装置的可达距离最多只能限制在几百公里 [1-3]。因此,卫星中继被认为是实现洲际链路非常有前途的解决方案 [4],多年来,已发表了多项关于自由空间卫星 QKD 的理论和实验可行性研究 [5-11]。然而,特别是对于卫星到地面的链路,大气湍流对信号传播的影响需要优化单模光纤 (SMF) 中的光耦合,这对于与地面站连接必不可少。
使用公共云的共享基础架构还可以帮助政府机构有效地相互共享数据,增强协作,通过使跨机构的分析和分析和洞察力更好,并始终如一地产生和呈现,并允许更大的灵活性来满足政府不断变化的需求。使用传统的IT系统,政府经常发现,一个机构自行存储的数据可能是其他机构无法访问的,因为IT系统不兼容或运行不同或过时的软件版本。通过在云中巩固政府数据,共享基础架构,并使所有数据符合和谐的技术,运营和数据安全框架(请参阅构建块2(数据分类和安全框架)),政府机构可以更有效地协作,同时保持其数据所需的安全级别。
这项工作根据零信任原则研究了基于云的环境的安全性。可能是确定漏洞并分析安全模型能够保护敏感数据并满足GDPR等法律要求的程度。通过穿透测试,检查了系统的核心组件,包括gitlab和openVPN,并使用诸如NMAP和BURP Suite之类的工具进行了检查。结果表明,零信任体系结构通过访问控制和验证提供了很高的安全性。SSL/TLS配置的测试表明,它们符合现代标准,而组件中的Auppentation和Encryption的管理确认了高安全级别。建议包括改进记录机制和定期审查访问政策以进一步降低风险。工作有助于创造更安全,更调节的云。
KVL 5000密钥变量加载程序(KVL)模块最初是不合规的,必须配置以在批准的操作模式下运行。加密货币官应配置模块以以批准的操作方式进行操作。为了使模块在批准的模式下运行,必须正确安装,初始化和配置模块,其中包括为加密货币官(CO)和用户角色创建密码。第2.3.1节中记录的是该模块在FIPS 140-3批准的整体安全级别2中使用的其他配置设置。设置菜单中的KVL主机应用程序图形用户界面的设置菜单将用于确定KVL 5000是否在批准模式下运行。在批准模式下操作时,显示器将指示。
量子量子联合学习(QFL)是一个新颖的框架,将分类联合学习(FL)的优势与量子技术的计算能力相结合。这包括量子计算和量子机学习(QML),使QFL能够处理高含量的复杂数据。QFL可以在经典和量子通信网络上部署,以使信息受益 - 理论安全级别超过传统的FL框架。在本文中,我们对QFL的挑战和机遇进行了首次全面调查。我们特别检查了QFL的关键组成部分,并确定在经典和量子网络中部署它时会出现的独特挑战。然后,我们开发新的解决方案并阐明可以帮助应对所确定挑战的研究方向。我们还提供了可行的建议,以推进QFL的实际实现。
- 试点安装的软件以收敛到组织可接受的安全标准。- 为即将到来的GDPR做好准备,并帮助您的DPO保留他的数据处理登记册,因为您两个将成为密切的同事。- 不再容忍在管理员模式下运行的机器。- 不再容忍用户从其主目录中下载和运行软件二进制文件。- 开始应用SRP(软件限制策略),也称为Appleocker或WDAC(Windows Defender Application Control),以提高应用程序级别的IT安全性。- 减少对软件漏洞和横向运动攻击的暴露水平。- 提出审核指标,以更好地了解已安装的IT设备及其全球安全级别。- 提示部署更新以对WannaCry或NotPetya等网络攻击做出反应。倒入les -litilisateurs finaux
摘要 — 量子联邦学习 (QFL) 是一种新颖的框架,它将经典联邦学习 (FL) 的优势与量子技术的计算能力相结合。这包括量子计算和量子机器学习 (QML),使 QFL 能够处理高维复杂数据。QFL 可以部署在经典和量子通信网络上,以便从超越传统 FL 框架的信息理论安全级别中受益。在本文中,我们首次全面调查了 QFL 的挑战和机遇。我们特别研究了 QFL 的关键组件,并确定了在经典和量子网络上部署 QFL 时出现的独特挑战。然后,我们开发了新颖的解决方案并阐明了有希望的研究方向,以帮助解决已发现的挑战。我们还提供了可行的建议,以推进 QFL 的实际实现。
摘要:本文研究了在没有网络连接的情况下使用无人机(UAV)将关键商品交付给偏远地区的。在这种情况下,重要的是跟踪交货过程并以延迟的方式记录交易,以便在无人机返回基地后可以恢复此信息。我们提出了一个新型框架,该框架结合了密码块链,物理层安全性以及对称和不对称加密技术的优势,以安全地加密远程交付操作的交易日志。所提出的方法显示出可提供较高的安全级别,使钥匙无法检测到,除了对攻击稳健。因此,它在用于物流和自动货物的无人机系统中非常有用。这在卫生应用中尤其重要,例如,对于疫苗传播或救济和救援行动。
为管理非载客 UTM 而构建的系统无法“升级”以达到监管认证所需的安全级别。需要实现每人使用飞行器 10 -9 /小时的全系统故障率。需要从一开始就将 ATC 系统 ([16], [17], [18], [19]) 和机载系统 ([20], [21], [22], [23]) 认证的监管要求纳入开发生命周期。追溯添加未作为开发一部分进行的流程、阶段和产品,即“稍后认证”方法,是不可行的和/或成本过高。 设计保证级别 (DAL,从 A 级(最高级别)到 E 级(最低级别)越低,开发成本和工作量越低。因此,D3 的目标是选择尽可能低的 DAL。D3 系统的 DAL 是在产品开发过程中作为系统架构和系统规范阶段的一部分确定的。
推荐机制:FrodoKEM-976([5] 中的第 2.5 节)、FrodoKEM-1344([5] 中的第 2.5 节)和 Classic McEliece,其参数在 [14] 第 7 节中属于第 3 和第 5 类,在密码学上适合长期保密保护,符合本技术指南所针对的安全级别。这是一个相当保守的评估,为未来可能的密码分析进展留出了相当大的安全余地。本文档的未来修订版可能会评估其他参数选择和 PQC 方案在技术上是否合适。FrodoKEM 未被列入 NIST PQC 项目第三轮的决赛入围者之列,而是作为备选方案。这主要是出于对该方案效率的考虑;其安全性毋庸置疑。因此,BSI 仍然推荐 FrodoKEM 作为 PQC 方案,具有较高的安全余地,可抵御未来的攻击。更多详细信息请参见 [12]。