爆炸物的分类 爆炸性爆炸物的销毁方法 申请注册以购买、运输、储存和使用私人用途的黑火药 申请爆破和运输许可证(SAPS 408) 爆炸物公路运输车辆的建造和许可规范(SAPS 392) 申请批准改装车辆以进行爆炸物公路运输(SAPS 409)。 申请爆炸物公路运输车辆许可证(SAPS 398)。 免除爆炸物公路运输车辆许可要求的有限数量爆炸物。 爆炸物弹药库安全距离。 弹药库围栏规范。 爆炸物弹药库的九月形式证书。 爆炸物授权申请。 测试、标准和实践守则库。 例如:爆炸物授权证书。 授权爆炸物清单。 申请经营消费性烟花的许可证。 烟火技师认证。 申请经营烟火求救信号的许可证
任何自动驾驶机器人汽车的最关键特征之一就是能够避免沿其路径的障碍。自动移动机器人具有内置系统,可以在沿其路径遇到障碍物时引导它。通过发送声音脉冲,可以测量机器人到障碍物的距离,同时控制转向齿轮以实现避免障碍物的功能。在本文中,提出了可以避免障碍的自动机器人汽车的发展。这是通过使用超声传感器来传感障碍并指导其运动来实现的。ATMEGA328微控制器用于从超声传感器中收集距离信息,根据嵌入式算法比较测得的距离,并使用它来确定是向前移动还是更改其路径。通过硬件和软件系统设计,构建了障碍物避免机器人汽车平台,同时获得了良好的实验效果。传感器可以感知的安全距离为15 cm,其角度覆盖面积为180 0。
军事行动中的抽象人工智能有两种。首先,存在狭窄或特定的智力 - 识别目标物种并跟踪其位置变化的自主能力。第二,有广泛或一般的情报 - 选择目标物种,确定实例,跟踪其运动,决定何时罢工,从错误中学习并改善初始选择的自主能力。这两种人工智能提出了道德问题,这主要是因为有两个特征:他们在部署它们的人与目标的人物之间放置的物理距离,以及它们独立于这些代理人行动的能力。这些功能提出的主要道德问题是三个。首先,如何在安全距离操作致命武器时保持毅力和骑士精神的传统武术?第二,授予机器多少自主权?和第三,可能会出现技术错误的可能性?本文依次考虑这些问题。关键字:人工智能;战争;武器;伦理;美德;自治;风险;神学伦理
文章历史:在过去的十年中,已经开发了各种基于速度障碍的方法,以避免动态环境中的碰撞。但是,这些方法通常仅限于处理几个障碍,连续的相遇或缺乏安全地形的安全保证。本文提出了使用速度障碍法的自适应碰撞避免策略,旨在使自主火星流浪者能够安全地驾驶动态和不确定的地形,同时避免多个障碍。该策略构建了自适应速度锥体,考虑了动态障碍和地形特征,从而确保了连续的安全性,同时将漫游者引导到其航路点。我们在模拟的MARS探索方案中实施了策略,代表了具有挑战性的多OSTACLAS任务。模拟结果表明,我们的方法通过增加安全距离来增强性能,使其非常适合自主行星探索,在这种情况下,避免碰撞对于任务成功至关重要。
摘要。随着人工智能 (AI) 和基于学习的系统的最新进展,各行各业已开始将 AI 组件集成到其产品和工作流程中。在可以频繁测试和开发的领域,这些系统已被证明非常有用,例如在汽车行业,车辆现在配备了先进的驾驶辅助系统 (ADAS),能够自动驾驶、路线规划以及与车道和其他车辆保持安全距离。然而,随着任务的安全关键方面增加,开发和测试基于 AI 的解决方案变得更加困难和昂贵。航空业就是这种情况,因此,开发必须在更长的时间内逐步进行。本文重点介绍在人类飞行员和潜在辅助系统之间创建界面,以帮助飞行员在复杂的飞行场景中导航。口头交流和增强现实 (AR) 被选为交流方式,口头交流以绿野仙踪 (WoOz) 的方式进行。该界面在飞行模拟器中进行了测试,并通过 NASA-TLX 和 SART 问卷就工作量和态势感知评估了其实用性。
摘要:飞机在航路上飞行时会发生并发事件情况(冲突情况),这种情况发生在它们在同一空域内飞行但在同一时间范围内彼此距离太近时。因此,它们之间的安全水平距离不小于标准的 5 海里。自由航路空域就是这样一个概念,当此类事件“热点”的位置和数量与固定航路(常规)空域相比是随机的时,需要解决此类并发事件。本文提出了两种通过执行水平解决机动来解决该区域交通冲突的方法。第一种方法使用 Dubins 轨迹,第二种方法使用三重航向变化 (3HC) 方法(针对两种角度)。除了保持安全距离外,我们还以冲突飞机的飞行路径延长为标准对它们进行了比较,因为飞行距离是决定飞行时间/延误以及燃料消耗和温室气体排放增加的主要因素。根据不同的数据,可能还有其他算法,可以通过进一步研究来确定。
摘要:在1990年代后期首次提出了在特定区域上的微小传感器的分布,称为一种称为智能灰尘的概念。几项努力主要集中在计算和网络功能上,但迅速遇到了与电源,成本,数据传输和环境污染有关的问题。为了克服这些局限性,我们建议使用基于纸张的(五彩纸屑样)化学传感器来利用化学试剂的固有选择性,例如比色指标。在这项工作中,由纤维素制成的廉价和可生物降解的被动传感器可以成功地表明存在有害化学物质,例如强酸,通过重大的颜色变化。连接到无人机的传统彩色数码相机可以轻松地从安全距离检测到这一点。处理收集的数据以定义危险区域。我们的工作介绍了智能粉尘概念,化学感应,基于纸张的传感器技术和低成本无人机,可在高风险场景中对危险化学物质的灵活,敏感,经济和快速检测。
沃特敦 — 阿尔察赫遭受了一系列恐怖事件,从 2020 年开始,阿尔察赫失去了大部分领土,到 2023 年,阿尔察赫的人口被驱逐,并被阿塞拜疆完全接管,这些事件对流亡国外的人产生了影响,但显然他们与外界保持着安全距离。经历过这种经历的卡拉巴赫人受到了不同的伤害。2023 年 9 月 25 日,一名年轻男子和他的家人不仅遭受了家园和土地被篡夺者的痛苦损失,而且在斯捷潘纳克特附近贝尔卡佐尔的一个仓库发生大火时损失更大,当时该市的居民在听说可能有燃料可供出售后,急于逃离,以免被阿塞拜疆军队占领。在随后发生的大火中,220 多人死亡,300 多人受伤。见《阿尔察赫青少年》,第 10 页
摘要。随着人工智能 (AI) 和基于学习的系统的最新进展,各行各业已开始将 AI 组件集成到其产品和工作流程中。在可以频繁测试和开发的领域,这些系统已被证明非常有用,例如在汽车行业,车辆现在配备了先进的驾驶辅助系统 (ADAS),能够自动驾驶、路线规划以及与车道和其他车辆保持安全距离。然而,随着任务的安全关键方面增加,开发和测试基于 AI 的解决方案变得更加困难和昂贵。航空业就是这种情况,因此,开发必须在更长的时间内逐步进行。本文重点介绍在人类飞行员和潜在辅助系统之间创建界面,以帮助飞行员在复杂的飞行场景中导航。口头交流和增强现实 (AR) 被选为交流方式,口头交流以绿野仙踪 (WoOz) 的方式进行。该界面在飞行模拟器中进行了测试,并通过 NASA-TLX 和 SART 问卷就工作量和态势感知评估了其实用性。
