高粱 (Sorghum bicolor (L.) Moench) 是世界主要的农业生产谷物作物之一,在干旱地区具有特殊重要性。然而,与其他谷物不同,高粱的营养价值较低,这是由于其种子储存蛋白 (kafirins) 对蛋白酶消化具有抗性等原因造成的。提高高粱营养价值的有效方法之一是获得部分或完全抑制 kafirins 合成或改变 kafirins 氨基酸组成的突变体。利用基因组编辑可以通过在 α- 和 γ-kafirin 基因的核苷酸序列中引入突变来解决此问题。在本研究中,选择了基因组靶基序 (23 bp 序列) 以将突变引入高粱的 α- 和 γ-KAFIRIN 基因。使用在线工具 CRISPROR 和 CHOPCHOP 进行 gRNA 的设计。为 α-KAFIRIN (k1C5) 和 γ-KAFIRIN (gKAF1) 基因选择了两个最合适的靶标。在 BsaI (Eco31I) 位点将相应序列插入通用载体 pSH121。通过 DNA 测序验证克隆过程。使用 SfiI 限制位点将所得构建体亚克隆到兼容的二元载体 B479p7oUZm-LH 中。通过使用 MluI 和 SfiI 切割位点的限制分析确认二元载体的正确组装。通过电穿孔将创建的四个载体 (1C - 4C) 转移到农杆菌菌株 AGL0 中。目前,该载体系列用于使用未成熟胚外植体对高粱进行稳定转化。
基因组编辑 CRISPR/Cas9 技术已导致人工转录抑制因子(也称为 CRISPR 干扰 (CRISPRi))的开发。由 crRNA 引导的失活 Cas9 (dCas9) 蛋白可以特异性地结合靶 DNA 序列,包括启动子和操纵子,而不会切割 DNA。原型间隔区相邻基序 (PAM) 序列依赖性在靶向特异性 CRISPRi 的设计中可能是不利的,因为 PAM 序列对于 CRISPR/Cas9 系统的 DNA 切割至关重要。我们在 L-阿拉伯糖诱导的 P BAD 启动子的控制下,在大肠杆菌中构建了一个染色体整合的 dCas9 系统 (1 araBAD : dcas9)。将携带各种 crRNA 的质粒转化到表达 dCas9 的大肠杆菌中,这些 crRNA 具有针对 gal 启动子(-10 区域)和 gal 操纵子中的 galETK 结构基因的靶序列。在有或没有无偿 L-阿拉伯糖的情况下监测细胞生长和/或半乳糖代谢率。靶向转录延长会部分减缓 D-半乳糖消耗和细胞生长,但靶向转录起始会完全抑制 D-半乳糖消耗和细胞生长。此外,RT-qPCR 分析表明,具有几种修饰 PAM 序列的 CRISPRi 可以抑制靶 DNA 的转录。这些结果表明,可以通过使用 CRISPRi 靶向结构基因或调控区域来控制细胞代谢率和细胞生长;此外,松散的 PAM 序列依赖性可以扩展 CRISPRi 的 DNA 靶标。
两种DNA修复途径,非同源末端连接(NHEJ)和替代末端连接(A-EJ),参与V(d)J重组和染色体易位。先前的研究报告了染色体易位的不同修复机制,NHEJ主要参与小鼠的人类和A-EJ。nhej取决于DNA-PKC,这是突触形成和下游成分激活的关键伴侣。虽然DNA-PKC抑制作用促进了具有小鼠微论的染色体易位,但其在人类中的同义效应尚不清楚。我们发现人类细胞中的部分DNA-PKC抑制会导致易位增加,并持续参与抑制的NHEJ。相比之下,完全增加了微学介导的末端连接(MMEJ),因此完全增加了DNA-PKC,从而弥合了人与小鼠之间的两种不同的易位机制。与先前关于KU70缺失的研究类似,G1/G0相小鼠祖细胞B细胞系中的DNA-PKCS缺失显着损害V(d)J重组,并由于编码失调和信号终端连接而产生了更高的易位速率。遗传DNA-PKC抑制完全抑制了NHEJ的参与,其表型上的修复类似于KU70缺乏的A-EJ。相比之下,我们发现在产生与Lig4缺乏相关的近乎异常的MMEJ时,DNA-PKCS所需的DNA-PKC。我们的研究强调了DNA-PKC抑制非法染色体重排,同时也有助于这两种物种的MMEJ。
4.2 剂量和给药方法 剂量 Roaccutane 的治疗反应与剂量有关,并且因患者而异。因此,需要根据病情反应和患者对药物的耐受性对剂量进行个体调整。在大多数情况下,经过 16 周的疗程,痤疮可以完全或接近完全抑制。所有患者最初应以每天最高 0.5 mg/kg/天体重的剂量接受 Roaccutane,持续两到四周,此时他们对药物的反应通常很明显。应该注意的是,在此初始阶段偶尔会出现痤疮的短暂恶化。据报道,0.05 mg/kg/天的初始反应令人满意。较低剂量的复发率较高(约三分之二的患者在 16 周的 0.1 mg/kg/天剂量下可能需要第二疗程),但较低剂量下不良反应的发生率和严重程度会降低。每日剂量应随餐服用,以最接近的完整胶囊数量服用,可作为单剂量或分两次服用,以更方便的方式服用。对于初始治疗效果不佳的患者,可使用最高 1 mg/kg/day 的剂量。应持续服用上述每日剂量的 Roaccutane 16 周以完成整个疗程。停药两个月后,如果严重囊肿性痤疮持续存在,可开始第二疗程治疗。
在理论上提出了高度相关的kagome系统中的超导性多年(参考文献1–5),但是实现实现很难实现6,7。最近发现的基于钒的kagome材料8,表现出超导性9-11和电荷密度波订单12-14,是非磁性的8,9,弱相关的15,16。因此,这些材料不太可能主持外来的超导性。在这里,我们报告了基于铬的kagome金属CSCR 3 SB 5的发现,与Fermi级别接近的较强的电子相关性,沮丧的磁性和特征性的平面带相反。在环境压力下,这种kagome金属在55 K处进行同时存在的结构和磁相变,具有条纹样4 A 0结构调制。在高压下,相跃迁演变为两个转变,可能与电荷密度波和抗磁性自旋密度波订购有关。这些密度波的订单逐渐被压力抑制,显着地,超导圆顶出现在3.65–8.0 GPA。超导过渡温度的最大t c max = 6.4 k,当密度波状的订单在4.2 GPA处完全抑制时出现,而正常状态表现出非常规超导性和量子的非常规超导性和量子性的行为,而基于铁的超电导超导量的量子则是17,18。我们的工作提供了一个空前的平台,用于研究相关的kagome系统中的超导性。
进行了本研究,以评估昆虫致病性线虫,Steinernema Carpocapsae Weiser和三种昆虫病变真菌(Metarhizium arisopliae(Metschn。)(Metschn。)Sorokin,Trichoderma Harzianum Rifai和T. Viride Pers。)针对Spodoptera Frugiperda的第二和第四幼虫龄(J. E. Smith)。结果表明,CarpoCapeAe在接种后4天(DPI)使用叶片浸入法(DPI)的LC 50值分别为52.03和4.11感染力少年(IJS)ML -1,在接种后4天,在接种后使用叶片浸出方法,使脆性链球菌的第二和第四个幼虫龄出现了明显的死亡率。另一方面,三种测试的昆虫病作用真菌对弗鲁吉帕尔达链球菌的幼虫龄产生了较强的毒性。真菌T。arzianum在第二个幼虫龄(LC 50 = 1.1×10 7孢子ML -1)和M. Anisopliae上显示出最高的杀虫活性,在10 dpi后,在第四个幼虫龄(LC 50 = 1.5×10 7个孢子ML -1)上表现出最高的杀虫活性。我们的结果表明,在250 IJS ML -1的幼虫中完全抑制了帕克环链球菌和成年幼虫的成年出现。昆虫致病性线虫和真菌对S. frugiperda幼虫龄的致命作用表明,这些生物控制剂在这种侵入性昆虫的综合害虫管理程序中可能是有用的候选者。
摘要:淀粉样蛋白和抗菌肽传统上被认为是具有不同生物学功能和靶标的不同家族。然而,某些淀粉样蛋白和抗菌肽具有共同的结构和功能特征,这些特征有助于神经退行性疾病的发展。具体而言,淀粉样蛋白-β (A β ) 的聚集和微生物感染是阿尔茨海默病 (AD) 中相互关联的病理因素。在本研究中,我们提出并展示了一种抗菌肽 protegrin-1 (PG-1) 的新型再利用策略,该策略表现出在体外和体内同时预防 A β 聚集和微生物感染的能力。通过使用蛋白质、细胞和蠕虫分析进行全面分析,我们发现了 PG-1 对抗 A β 的多种功能,包括:(i)在低摩尔比 PG-1/A β = 0.25:1 时完全抑制 A β 聚集,(ii)将预先形成的 A β 纤维拆解为无定形聚集体,(iii)降低 A β 在 SH-SY5Y 细胞和转基因 GMC101 线虫中诱导的细胞毒性,以及(iv)在 A β 存在下保留对 PA、大肠杆菌、SA 和 SE 菌株的原始抗菌活性。从机制上讲,PG-1 的双重抗淀粉样蛋白和抗菌功能主要来自于它通过构象相似的 β 片层关联与不同的 A β 种子(KD = 1.24 − 1.90 μ M)强结合。这项研究提出了一种有前景的策略,即将抗菌肽重新用作淀粉样蛋白抑制剂,有效针对 AD 中的多种病理途径。关键词:protegrin-1、交叉播种、微生物感染、阿尔茨海默病、淀粉样蛋白聚集、淀粉样蛋白抑制
SO 2 浓度乳酸菌(包括酒类酒球菌)对分子形式的 SO 2 高度敏感。因此,为避免分子 SO 2 对苹果酸乳酸菌产生潜在的致命影响,建议用于诱导 MLF 的葡萄汁/葡萄酒中不要含有任何可检测到的游离 SO 2(注意,传统的红酒 SO 2 测量方法,如曝气氧化法,往往会高估游离和分子 SO 2 浓度(Coelho 等人,2015 年,Howe 等人,2018 年))。此外,由于结合 SO 2 也可能对苹果酸乳酸菌和 MLF 有抑制作用,因此总 SO 2 浓度可作为衡量 SO 2 对特定葡萄酒 MLF 潜在影响的有用指标。作为指导,在压碎葡萄之前向葡萄中添加最多 50 mg/L 的总 SO 2 可限制对 MLF 的潜在不利影响。然而,由于其他外在(如葡萄的采摘和运输)和内在(如用于酒精发酵的酵母菌株)来源可能会积累 SO 2,因此建议在接种细菌之前准确测量总 SO 2 。总而言之,有利的 MLF 的理想总 SO 2 浓度小于 30 mg/L。根据所用的苹果酸乳酸菌菌株和其他葡萄酒参数,总 SO 2 浓度超过 40 mg/L 是不利的,可能会延迟 MLF 的开始和完成。浓度 >50-60 mg/L 可能会完全抑制 MLF。其他抑制因素除了上面提到的参数外,农药残留、高残留铜浓度和来自酵母的高含量某些中链脂肪酸也会抑制 MLF。
摘要:将纳米粒子递送至实体肿瘤是纳米医学面临的主要挑战。在这里,我们从生物地球化学的角度来应对这一挑战,生物地球化学是研究生态系统中化学元素在活细胞生物及其环境的操纵下流动的领域。我们利用与金循环治疗胰腺癌有关的生物地球化学概念,将哺乳动物视为金纳米粒子生物合成的驱动力。已证明在肿瘤内封存金纳米粒子是增强放射治疗的有效策略;然而,胰腺癌的纤维组织增生阻碍了纳米粒子的递送。我们的策略通过使用原子级药剂——离子金来进行肿瘤内金纳米粒子的生物合成来克服这一障碍。我们的全面研究表明,在体外和在小鼠胰腺癌模型中,可以从外部递送的金离子进行癌症特异性金纳米粒子的合成;在体内和体外,金纳米粒子 (GNP) 与癌细胞核显著共定位;细胞内合成的 GNP 具有很强的放射增敏作用;原位合成的 GNP 在整个肿瘤体积中分布均匀;在用金离子和放射治疗的胰腺癌动物模型中,肿瘤生长被完全抑制了近 40 天,并且与单独放射治疗相比,中位生存期明显更长(分别为 235 天和 102 天)。关键词:生物矿化、金纳米粒子、原位治疗、放射增敏、胰腺癌 L
异常激活的激酶信号通路驱动髓母细胞瘤 (MB) 的侵袭和播散。大多数促肿瘤激酶信号通路都参与丝裂原活化蛋白激酶 (MAPK) 细胞外调节激酶 (ERK1/2) 通路。MB 细胞侵袭过程中 ERK1/2 的激活状态尚不清楚,其在侵袭控制中的作用尚不清楚。我们为 MB 细胞中的 MAPK ERK1/2 通路建立了一种合成激酶活化重定位传感器 (SKARS),用于实时测量药物反应。我们使用 3D 侵袭试验和器官型小脑切片培养来测试生理相关组织环境中的药物效果。我们发现肝细胞生长因子 (HGF)、表皮生长因子 (EGF) 或碱性成纤维细胞生长因子 (bFGF) 导致 MB 细胞中核 ERK1/2 快速激活,这种激活持续数小时。与 BCR/ABL 激酶抑制剂达沙替尼同时治疗可完全抑制由 HGF 和 EGF 诱导的核 ERK1/2 活性,但不能抑制由 bFGF 诱导的核 ERK1/2 活性。核 ERK1/2 活性增加与侵袭速度呈正相关。达沙替尼阻断了大多数细胞中的 ERK 相关侵袭,但我们也观察到 ERK1/2 活性低的快速侵袭细胞。这些 ERK1/2 低、快速移动的细胞呈现圆形形态,而 ERK 高、快速移动的细胞呈现间充质形态。达沙替尼有效阻断了 EGF 诱导的增殖,但仅适度抑制组织侵袭,这表明一部分细胞可能通过非间充质运动逃避达沙替尼的侵袭抑制。因此,生长因子诱导的 ERK1/2 核活化与 MB 细胞中的间充质运动和增殖有关,并且可以通过 BCR/ABL 激酶抑制剂达沙替尼阻断。