早期的量子算法主要基于两种算法,Grover 搜索算法 [1] 和量子傅里叶变换 (QFT) [2, 3]。量子相位估计算法 (PEA) [2] 是 QFT 最重要的应用之一,也是许多其他量子算法的关键,例如量子计数算法 [4] 和 Shor 整数分解算法 [3]。基于 PEA 的寻序子过程被认为是 Shor 算法指数级加速的源泉。虽然 PEA 是在 20 多年前提出的,但它仍然是近年来的研究热点 [5, 6, 7]。相位估计还引发了一个更广泛的主题,即幅度估计 [8, 9, 10, 11, 12, 13],包括最大似然幅度估计 [10]、迭代幅度估计 [12] 和变分幅度估计 [13]。此外,迭代相位估计算法 (IPEA) [14, 15, 16] 是 PEA 的一种更适合 NISQ (噪声-中间尺度量子) 的变体。在一定的 ϕ 选择策略下,IPEA 与 PEA [14] 完全相同,因此本文不再赘述。相位估计和振幅估计在量子化学 [17, 18, 19] 和机器学习 [20, 21] 等众多领域都有广泛的应用。给定一个执行幺正变换 U 的量子电路,以及一个本征态 | ψ ⟩
最近,在量子科学和技术领域取得了巨大进展:量子模拟的不同平台以及量子计算的平台,从超导量子量到中性原子,始于开始,以达到前所未有的大型系统。为了基准这些系统并获得物理见解,需要有效的工具来表征量子状态。系统尺寸的希尔伯特空间的指数增长构成了对量子状态的全面重建,这是根据必要测量的数量而过于要求的。在这里,我们提出并实施了使用主动学习的量子状态效率的效率方案。基于一些初始测量,主动学习协议提出了下一个衡量基础,旨在产生最大信息。我们将主动学习量子状态态度方案应用于具有不同程度的范围的不同多数状态,以及1D中XXZ模型的基态和动力学结合的旋转链的基态。在所有情况下,与基于完全相同数量的测量和测量配置的重建相比,我们都会获得明显改进的重建,但具有最多选择的基础配置。我们的方案与获得量子多体系统以及基准测试和特征量子设备的物理见解高度相关,例如用于量子模拟,并为可伸缩的道路铺平了道路
靶控输注 (TCI) 是普遍认可的麻醉药物给药技术。1 这些泵根据基于多室乳头模型(由多指数方程组成)的药代动力学-药效学 (PK-PD) 模拟来给药。2 对于丙泊酚,目前 TCI 泵采用 Marsh 3 和 Schnider 4 参数集,其包含三室模型和附加的效应位室。TCI 泵提供 Marsh 模型的两种变体中的一种或两种,即 (i) 最早的 TCI 泵(Diprifusor-Marsh)中编入的原始 Diprifusor 参数集 3 或 (ii) 调整后的 Marsh 模型。5 这两个参数集除了 k e0 速率常数(该参数决定了药物在血液和效应位之间的转移速率)之外完全相同。 Diprifusor-Marsh 模型 3 采用了 0.26 min -1 的 ak e0 ,这说明丙泊酚在血液和效应部位之间的转移速度相对较慢。因此,使用原始模型模拟的丙泊酚推注剂量预测效应部位浓度的峰值时间为 4.5 分钟。Diprifusor-Marsh 模型在数学上是不正确的,因为它采用了另一项研究的 k e0 。6 后续研究表明
拓扑,具有良好的扩展特性。消息在网络中的路由由 Tourmalet 芯片完成,并基于 16 位目标节点地址。BSS-2 作为一种混合信号神经形态计算系统,建立在 HICANN-X (HX) 芯片之上,该芯片具有 512 个自适应指数积分和激发 (AdEx) 神经元电路和 512 × 256 = 131 072 个突触 [7]。通过组合神经元电路,每个神经元最多可配置 16 k 个突触输入。实现具有这种神经元的大型网络需要多芯片系统。[1, 3, 10, 12] 最近,BSS-2 系统开发进展到多芯片系统,具有 46 个 HX 芯片,每个芯片通过 8 个 1 Gbit s −1 串行链路连接到 Kintex 7 FPGA。这些系统利用 BSS-1 晶圆模块基础设施,通过将许多芯片放置在与 BSS-1 晶圆完全相同尺寸和引脚配置的大型 PCB 上来模拟全晶圆级实现[13, 15]。我们认为 [16] 中描述的拓扑对于在带宽和网络直径方面互连晶圆模块上的多个 FPGA 是最佳的。图 1 显示了用于测试 BSS-2 EXTOLL 网络的当前实验室设置[7, 14]。它通过连接到 FPGA 的 MGT 端口的 USB 3.0 插头物理连接到 EXTOLL 网络。此外,它仍然连接到以太网网络以用于 FPGA 位文件闪存。该设置包含四个 FPGA 和两个芯片。
新孢子虫主要感染牛,导致牛流产,估计每年对全球经济造成 10 亿美元的损失。然而,对其生物学的研究一直被忽视,因为既定范式认为它与其近亲、广泛研究的人类病原体弓形虫几乎完全相同。通过使用第三代测序技术重新审视基因组序列、组装和注释,我们在此表明,新孢子虫基因组最初是在与弓形虫同源的假设下错误组装的。我们表明这些物种之间发生了重大染色体重排。重要的是,我们表明最初命名为 Chr VIIb 和 VIII 的染色体确实融合了,从而将新孢子虫和弓形虫的核型都减少到 13 条染色体。我们重新注释了新孢子虫基因组,揭示了 500 多个新基因。我们对非光合质体和线粒体基因组进行了测序和注释,并表明尽管顶质体基因组几乎相同,但物种和菌株之间存在高水平的基因碎片化和重组。我们的结果纠正了目前在 N. caninum 和 T. gondii 基因组数据库中广泛分布的组装伪影,更重要的是,突出了线粒体是以前被忽视的变异源,并为改变同源性范式铺平了道路,鼓励重新思考基因组作为这些病原体比较独特生物学的基础。
自助餐计划选举通常必须在覆盖期开始之前进行,并在覆盖期内保持不变。覆盖期通常为 12 个月的自助餐计划年度,但对于新符合条件的员工或新的自助餐计划,覆盖期可能更短。自助餐计划的计划年度不得超过 12 个月。除单独的牙科和视力计划外,必须每年允许选举变更。在非正式指导中,美国国税局表示,单独的牙科和视力计划可以使用两年的选举。自助餐计划选举规则是最大值,而不是最小值。自助餐计划可能比法规更严格,但不会更宽松。从技术上讲,自助餐计划可以写成禁止除健康储蓄账户 (HSA) 选举之外的任何选举变更。自助餐计划必须允许至少每月一次的 HSA 选举变更。尽管其他法律(如 HIPAA)要求健康计划允许某些选择变更,例如在结婚后为新配偶增加保险,但雇主可以要求在税后进行变更。实际上,几乎所有自助餐计划都允许在税前进行 HIPAA 特殊登记变更。承运人规则可能与 IRS 规则相似,但并不完全相同。团体健康保险合同几乎普遍允许员工在以下情况下为自己和/或家庭成员登记:
目前,我们对 F-4 中的燃油分配没有太多控制权。事实上,我们甚至不知道它到了那里之后在哪里!因此,知道空的 5 和 6 号油箱会使重心前移并没有多大帮助。内翼燃油不应该进入 5 号和 6 号油箱。但我们发现在某些情况下它会进入。它如何或为什么会进入那里是工程师的问题。坐在驾驶舱里,我们只需要知道内翼燃油确实会进入某些飞机的 5 号和 6 号油箱。我们现在正在尝试确定是哪些。当然,外部油箱会进入所有机身油箱。目前,我们无法达到理想的状态,即 5 号和 6 号油箱为空,只在前四个油箱中加油。那么机身油箱如何供油?5 号和 6 号油箱在 3 号和 4 号油箱开始供油之前是否已经供油完毕?它们不应该这样。据我们所知,3、4、5 和 6 应该一起供油。这四个油箱中的燃油量应该均匀下降。现在,这是基于这样的理解:4 号油箱和 6 号油箱中的输送泵的额定容量相同。但从实际情况来看,我们知道没有两个泵的实际输出会完全相同。因此,可能会发生 6 号油箱中的泵更强大,在 3 号油箱和 4 号油箱开始供油之前,将 5 号油箱和 6 号油箱中的所有燃油都输送出去。也可能发生另一个油箱中的泵
人的可靠性比飞机系统的可靠性低得多,对人类在执行重复性任务时所犯错误数量的测量表明,他们犯错误的概率是 10 − 2 ,如果考虑到人体工程学标准并提供执行任务的特定培训,这个概率可以降低到 10 − 3 ,按照人类的标准,这个概率很低,但比飞机系统故障所需的概率高得多,飞机系统故障的概率必须在 10 − 5 到 10 − 9 范围内(FAA,1988)。因此,人是航空系统中最薄弱的环节,与飞机上装载的计算机代码不同,计算机代码的执行方式总是完全相同,人类非常灵活,他们的可靠性变化很大,身体或情绪障碍会随着时间的推移影响他们的表现;在同一次飞行中,飞行员的表现可能会因为睡眠不足或疲劳而发生变化,同样,在飞行员的职业生涯中,他的表现可能会暂时受到情绪问题的影响,或者永久受到心理和生理能力下降的影响,这可能导致其执照暂时或永久被吊销。自商业航空诞生以来,这些人为干扰就已被发现;八十年前,Meier-Müller (1940a,b) 首次对航空事故原因进行了认真的分析,结果表明约 70% 的事故是由于人为失误造成的,这一数值多年来一直保持不变,如 Lautman & Gallimore (1987) 所示;Helmreich & Foushee (1993)
在华盛顿州商务部管理下,Avista 获得了 350 万美元的配套资助,用于支持共享能源经济模式试点项目,以展示和测试能源资产的整合——从屋顶太阳能和电池储存到建筑能源管理系统——这些资产可以共享并用于多种用途。该模式试点的合作伙伴包括华盛顿州立大学 (WSU)、McKinstry、施魏策尔工程实验室、Spirae、Itron 和太平洋西北国家实验室。目标是展示客户和公用事业公司如何从这种共享能源经济模式中受益,并展示电网可以变得更加可靠、高效、有弹性和灵活。共享能源经济模型包括斯波坎健康科学园区的两个电池储能系统 (BESS)、两个屋顶光伏 (PV) 系统和具有先进建筑管理系统的灵活建筑负荷。两个 BESS 都是锂离子电池,一个额定功率为 500 kW/1506 kWh,另一个额定功率为 168 kW/335 kWh,总功率为 668 kW/1841 kWh。两个屋顶光伏系统完全相同,每个额定功率为 100 kW。通过适当的协调和控制,这些分布式能源资源 (DER) 将实现高价值应用,旨在造福公用事业公司及其服务的客户,包括:
摘要 人类的初级和次级神经管形成过程(形成脊髓的过程)尚未完全了解,这主要是因为获取神经管形成阶段胚胎(受精后 3-7 周)的难度较大。本文,我们描述了 108 个人类胚胎的发现,涵盖卡内基阶段 (CS) 10-18。初级神经管形成在后神经孔处完成,神经板弯曲与小鼠相似但不完全相同。次级神经管形成从 CS13 开始,形成单个管腔(如小鼠中一样),而不是多个管腔(如鸡中一样)融合。没有证据表明从初级神经管形成到次级神经管形成存在“过渡区”。60% 的近端人类尾部区域发生次级神经管“分裂”。人类每 7 小时形成一个体节,而小鼠为 2 小时,人类类器官的“分节时钟”为 5 小时。 CS15 胚胎尾芽中 WNT3A 和 FGF8 下调后,轴向伸长终止,伴随“爆发性”细胞凋亡,可能消除神经中胚层祖细胞。因此,人类和小鼠/大鼠脊髓神经形成的主要差异与时间有关。研究人员现在正试图在干细胞衍生的类器官中重现神经形成事件,我们的结果为解释此类研究结果提供了“规范数据”。