按照 3 类易燃液体的要求,将其存放在有遮盖的围堤区域。存放在通风良好的区域,远离热源或火源。始终保持容器关闭。与任何化学品一样,应通过良好的职业工作实践避免摄入、吸入和长时间或反复的皮肤接触。处理时必须佩戴经 AS1337 批准的护目镜。吸烟、进食、饮水或上厕所前务必洗手。硬化剂中的异氰酸酯与水反应时会放出气体。如果密闭容器出现内部压力迹象,请用布将其完全覆盖并缓慢取下盖子,以防止溅出或盖子剧烈喷出。在通风良好的条件下使用,避免吸入喷雾和烟雾。喷涂时,请佩戴正压供气式呼吸器。用户必须始终遵守各州喷漆法规的规定。本产品易燃。必须消除工作区域内或附近的所有火源。禁止吸烟。用泡沫、二氧化碳或干粉灭火。燃烧时会释放有毒烟雾。如果焊接表面涂有此涂料,请避免吸入烟雾。焊接前打磨涂层。
聚合物是超快激光器处理的首批材料之一。然而,尚未完全了解近红外激光束的吸收性质,因此以高能量效率处理聚合物材料仍然具有挑战性。在这项研究中,聚丙烯(PP)(PP)的光学特性(反射率,透射率和吸收性)的脉冲到脉冲演化,这是在许多工业应用中广泛使用的重要聚合物材料,是通过对广泛的脉动能进行的时间分辨测量来确定的。目标是区分不同激光 - 摩擦相互作用方案中的线性和非线性吸收,并选择产生最高能量效率的处理条件。实验是通过在基于椭圆形的镜像设置中记录每个激光脉冲的反射和传输来执行的,该设置可以收集散射反射,并几乎完全覆盖。吸收是根据实验数据计算的,并使用线性和非线性吸收组成的模型来分析结果。发现PP从脉冲到脉冲发生了巨大的形态变化,伴随着光学特性的变化,即激光条件的调整以充分利用激光能。他们的结果可以有助于提高聚合物对高通量操作的超舒服激光处理中的能源效率。
摘要。通过大气色谱扫描成像吸收光谱仪 (SCIAMACHY) 的第 6 通道测量的羟基 (OH) 短波红外辐射 (OH(4-2、5-2、8-5、9-6)) 用于推算 80 至 96 公里之间的 OH(v = 4、5、8 和 9) 浓度。利用反演的浓度模拟大气探测宽带辐射测量 (SABER) 仪器测得的 1.6 µm 处的 OH(5-3、4-2) 积分辐射和 2.0 µm 处的 OH(9-7、8-6) 积分辐射,SCIAMACHY 测量的光谱范围并未完全覆盖这些辐射。平均而言,与使用 SCIAMACHY 数据的模拟相比,SABER“未滤波”数据在 1.6 µm 处大约大 40%,在 2.0 µm 处大约大 20%。 “未滤波” SABER 数据是一种产品,它考虑了仪器宽带滤波器的形状、宽度和透射,它们不覆盖相应 OH 跃迁的完整旋转振动带。研究发现,如果使用已发布的 SABER 干涉滤波器特性和 HI-TRAN 数据库中的最新爱因斯坦系数手动执行滤波过程,SCIAMACHY 和 SABER 数据之间的差异最多可减少 50%。讨论了与模型参数不确定性和辐射校准有关的剩余差异。
台山反中微子观测站(TAO,又称JUNO-TAO)是江门地下中微子观测站(JUNO)的卫星实验。一台吨级液体闪烁体探测器将放置在距离台山核电站核心约 30 米的地方。反应堆反中微子谱将以亚百分能量分辨率进行测量,为未来的反应堆中微子实验提供参考谱,并为测试核数据库提供基准测量。一个装有 2.8 吨钆掺杂液体闪烁体的球形丙烯酸容器将通过 10 m 2 硅光电倍增管 (SiPM) 进行观察,其光子探测效率 > 50%,几乎完全覆盖。光电子产量约为每兆电子伏 4500 个,比任何现有的大型液体闪烁体探测器都要高一个数量级。该探测器在 -50 ◦ C 下运行,以将 SiPM 的暗噪声降低到可接受的水平。该探测器每天将测量约 2000 个反应堆反中微子,并设计为能够很好地屏蔽宇宙背景和环境放射性,使背景信号比约为 10%。该实验预计将于 2022 年开始运行。
全球环境与安全监测 (GMES) 的成立是为了满足欧洲决策者日益增长的需求,即获取准确及时的信息服务,以便更好地管理环境、了解和减轻气候变化的影响并确保公民安全。必须具备适当的欧洲地球观测能力,以确保充满活力和有效的 GMES 服务组合的开发运营和可持续性。Sentinel-3 是一项欧洲地球观测卫星任务,旨在支持 GMES 的海洋环境服务,为陆地、大气紧急情况、安全和冰冻圈服务做出贡献。Sentinel-3 任务需要一系列卫星,承诺持续、长期收集质量均匀的数据,以可操作的方式生成和交付,用于数值海洋预测、海洋状态分析、预报和服务提供。测量要求已确定如下: 在全球海洋上获取海面地形 (SSH)、有效波高 (Hs) 和表面风速,其精度和精确度超过 Envisat RA-2。 增强沿海地区、海冰区域和内陆河流、其支流和湖泊的表面地形测量。 为全球海洋和沿海水域确定的红外和热红外辐射(“海陆表面温度”)的精度和精确度与 ENVISAT AATSR 目前在海洋上实现的精度和精确度相当,即<0.3 K),空间分辨率为 1 公里。 每 1 到 3 天通过光学仪器完成全球覆盖。 海洋和沿海水域的可见辐射(“海洋颜色”),其精度和精确度与 ENVISAT MERIS 和 AATSR 数据相当,可在 2 至 3 天内完全覆盖地球,空间分辨率同时为 ≤0.3 公里,并与 SST 测量值共同记录。 陆地表面(包括海冰和冰盖)的可见光、近红外、短波红外和热红外辐射(“陆地颜色和温度”),可在 1 至 2 天内完全覆盖地球,其产品至少与 ENVISAT MERIS、AATSR 和 SPOT Vegetation 以及它们的组合产品相当。Sentinel-3 任务概念的基本 GMES 操作要求是: 使用高倾角极地轨道,实现近乎完整的全球覆盖。 利用现有卫星高度计系统优化海洋表面地形测量覆盖范围。 光学仪器需要具有下降节点赤道穿越时间的太阳同步轨道,以补充现有平台测量及其长期序列,以减轻下午海洋热分层、太阳反光、早晨雾霾和云层的影响。 优化海面温度和海洋颜色测量的测量时间。 近实时数据处理和及时向运营用户提供所有处理产品的稳健交付 在 20 年的计划期限内,连续传输至少与 Envisat 交付质量相同的数据。 2013 年发射第一颗卫星(配备一系列平台以满足观测要求以及稳健、连续的运行数据提供要求)。
摘要:本文介绍了一个能够通过终生预后扩展的私人家庭的能量系统的模型。该能源系统旨在使用由氢气单元和锂离子电池组成的混合储能系统完全覆盖私人家庭的全年能源需求。在夏季,由PV剩余用质子交换膜(PEM)产生氢,然后存储在氢气罐中。主要在冬季,就缺乏PV能量而言,氢被燃料电池转化为电和热量。该模型是在MATLAB/SIMULINK中创建的,并且基于实际输入数据。还考虑了热量需求,并被热泵覆盖。模拟期是解决能源生产和需求的季节性的整整一年。由于高初始成本,这种能源系统的寿命至关重要。因此,该模型是通过终生预测扩展的,以优化尺寸,目的是基于氢的能量系统的寿命延长。生命周期的影响因素是根据文献综述确定的,并将其整合在模型中。进行了一项广泛的参数研究,以评估有关三个组件的能量平衡和寿命的不同尺寸,即电机,燃料电池和锂离子电池。结果证明了整体建模方法的好处,并启用了有关系统使用资源,寿命和自助率的设计优化。
AW-Drones 项目旨在通过确定与 UAS 领域相关的现有标准来支持规则制定过程,从而协调欧盟无人机监管框架。本文件介绍了对被认为可能符合特定操作风险评估方法 (SORA) 规定的要求的标准的评估结果,该方法由欧洲航空安全局 (EASA) 推荐为欧盟法规 947/2019 第 11 条的 AMC。对于每项 SORA 要求,评估都会提供一份至少可部分覆盖的标准清单,以及完全覆盖所缺少的空白,以及一份建议清单,以弥补每个空白并完全满足要求。在对标准进行全面评估之前,有一个数据收集阶段,其中包括将收集到的标准与 SORA 要求进行初步映射。这导致针对每项要求确定了一组可能适合支持合规性的标准。根据项目在工作包 2 中定义的评估方法,评估重点关注以下情况: 情况 1:已确定一个或多个可能适合满足给定要求的标准; 情况 2:没有完全涵盖给定要求的标准,因此确定了差距。因此,对于每个 SORA 要求,本文档提供: 部分或完全涵盖要求的标准列表,按全球范围排序
D. Richard Kuhn,NIST,kuhn@nist.gov Raghu N. Kacker,NIST,raghu.kacker@nist.gov Yu Lei,德克萨斯大学阿灵顿分校,ylei@uta.edu Dimitris Simos,SBA 研究部,DSimos@sba-research.org 摘要:测试是软件保证最常用的方法,但它既是一门科学,也是一门判断和艺术。结构覆盖通过为某些测试完整性概念建立正式定义的标准,为该过程增加了一些严谨性,但即使是完全覆盖,无论如何定义,也可能会遗漏与测试套件中未包含的罕见输入相关的故障。我们建议,结构覆盖度量必须辅以输入空间覆盖度量。有用的输入空间度量是存在的,并且与结构覆盖度量有关系,提供了一种验证是否已定义适当输入模型的方法。简介 将测试作为一种软件验证形式的主要反对意见之一是,它永远不可能证明被测系统适用于所有可能的输入。也很难提供关于测试集是否足以验证被测系统 (SUT) 是否正常工作的有意义的陈述。传统的结构覆盖率测量,通常是语句或分支覆盖率,有很多不足之处。即使执行了所有语句并进行了所有分支,也不能保证输入空间已被充分覆盖以进行故障检测。潜在错误可能会在稍后出现非常罕见的条件组合,而这些条件组合并未包含在测试中。系统地划分输入空间的方法已被广泛研究,但大多数方法必然涉及大量主观判断,并且不提供完整性的定量测量。组合方法提供了基于现有输入空间划分技术的方法,以提供更严格的测试。覆盖率测量完整的输入模型是实现全面测试的目标的一部分。根据在定义完整性时要考虑的系统方面,存在多种方法来确定何时认为测试足够。通常,这些方法包括完全覆盖要求的一些概念,并且可能还考虑代码的结构覆盖率。在软件工程中,结构覆盖率是指程序执行程度的度量。最广泛使用的两种度量是语句覆盖率(已执行的程序语句的比例)和分支覆盖率(也称为判定覆盖率),即被评估为真和假的分支的比例。还有许多其他度量或测试标准,包括条件覆盖率和修改后的条件判定覆盖率,并且可以证明这些标准形成了一个层次结构 [4]。例如,判定覆盖率包含语句覆盖率。结构覆盖率度量在衡量测试集的完整性方面很有价值,虽然它们的实用性有些有限。语句覆盖率是这些措施中最弱的,但未能实现完整的语句覆盖率至少表明代码没有得到充分的测试。分支覆盖率提供了更强大的
如果母犬对病毒有免疫力,幼犬也会有免疫力。如果母犬有良好的疫苗接种史,她会把她接种过的所有疫苗的免疫力传给她的幼犬。当幼犬 8 周大时,这些母源抗体开始急剧下降。此时,我们开始为它们接种疫苗。如果母犬没有接种过疫苗,或者她的疫苗接种情况不明(流浪犬的情况),建议在 6 周大时开始接种疫苗。然而,这是唯一推荐的时间。如果母犬已经接种过疫苗,在 8 周之前开始接种疫苗实际上会形成所谓的“病毒窗口”。疫苗可能会被母源抗体完全覆盖,或者两者可能会相互抵消,使幼犬暴露于这些致命疾病。16 周以下的幼犬的免疫系统尚未成熟,只能保持疫苗的免疫力约一个月。因此,我们每月接种一次疫苗,直到幼犬在 16 周大时免疫系统成熟。此时,幼犬将像成年动物一样做出反应,并在一年内保持免疫力,在此期间应加强疫苗接种。如果幼犬在开始接种疫苗时年龄超过 16 周,则应接种两次犬瘟热/细小病毒/钩端螺旋体组合疫苗,间隔至少两周,并接种一次狂犬病疫苗。
高效的长距离能量传输对于光电和光收集设备至关重要。尽管有机分子的自组装纳米纤维表现出较长的激子扩散长度,但将这些纳米纤维排列成具有相似性质的大型有序域的薄膜仍然是一个挑战。本文展示了如何用离散长度的寡二甲基硅氧烷(o DMS)侧链对 C3 对称羰基桥接三芳胺三酰胺 (CBT) 进行功能化,从而形成完全覆盖的表面,其中排列的域最大可达 125 × 70 μ m 2,可在其中进行长距离激子传输。域内的纳米级形貌由高度有序的纳米纤维组成,纳米纤维在柔软的非晶态 o DMS 基质内具有离散的柱间距。o DMS 可防止 CBT 纤维捆绑,从而减少 CBT 柱内的缺陷数量。因此,这些柱具有高度的相干性,导致激子扩散长度为几百纳米,激子扩散率(≈ 0.05 cm 2 s − 1)与结晶四苯并菲相当。这些发现代表了通过使用 o DMS 功能化实现高度对齐的纳米纤维完全覆盖表面的下一步。