新西兰在挑战现状方面享有声誉。新西兰公司喜欢拥抱创新,并不断努力寻找解决方案。这种精神贯穿我们所做的一切 - 无论是寻找新的方法来以可持续的方式增强我们的农业产出,设计世界一流的动画,还是改善为公民和企业的服务。
1。通过做:想了解生成AI吗?开始学习的最佳方法是使用生成的AI工具来玩耍。当然有显而易见的chatgpt,但是您还可以使用数千个工具。在此处查看列表。更进一步,如果您真的想了解生成AI的机制,请尝试编程。不用担心,编程并不像一开始可能出现的那样令人生畏。在线上有大量编程教程,您可以使用Chatgpt检查您的代码并提供建议(请记住CHATGPT可能是不正确的,还可以为您提供具有错误的代码,因此您需要用自己的思想来解决一些问题解决方案)。要开始,请尝试使用Chatgpt算法创建自己的聊天机器人。为了提高您的就业能力,重要的是要找到脱颖而出的方法。考虑一下您可以从事的项目表明您如何建立新技能,然后您可以将其添加到简历中,作为工作组合。您今天可以开始 - 您不需要等待实习(如果有的话,这些项目将帮助您确保实习和未来的工作)。
摘要本文研究了大数据驱动算法的决策中完整性的问题。大数据是指对于传统处理方法而无法有效处理的数据集。数据驱动的算法通常依靠历史数据来做出预测,但是当这些数据偏见时,结果会同样偏斜。在大数据实践中对功利主义方法的依赖;优先考虑大多数人的效率和统计结果,风险通过忽视个人自主权,尊严和人类经验的复杂性来损害个人完整性。是在此基础上,本文使用伯纳德·威廉姆斯(Bernard Williams)的诚信概念作为理论框架,研究了功利主义在大数据和算法决策中的道德意义。本文认为,通过大数据最大化效用的功利主义理由通常会导致个人正直的侵蚀,尤其是当个人被视为终结手段时。通过评估和概念分析方法,本文提倡对大数据实践进行道德重新评估,并提出威廉姆斯对诚信的见解应指导发展更具道德责任的技术,以保留个人和道德真实性。
执行摘要 BMT 船队技术有限公司受加拿大交通部委托,招标编号为T8275- 020463/001/SS,代表船舶结构委员会评估“压载水化学处理技术导致的结构完整性恶化”。从生物有效性的角度看,全球对各种压载水处理方法的有效性进行了大量研究和开发,2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。虽然人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止,尚无任何研究检查过结构暴露于压载水处理技术(特别是化学药剂)的长期完整性方面。该项目已分为几个任务,首先进行广泛的文献综述。这篇综述研究了淡水和咸水中钢的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。这篇综述指出,暴露在海水中的钢的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率受氧气从本体溶液到钢表面的扩散速率控制,而受到侵蚀的碳钢的成分对速率没有影响。最初的腐蚀速率较高,至少是随后稳定状态速率的 2.5 倍,根据一些研究,稳定状态速率在暴露后一个月内开始。还回顾了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;然而,使用添加剂的组合,在 pH 值 4 和 10 范围内腐蚀率可能会发生显著变化。腐蚀率也随温度升高而增加。当腐蚀由氧气扩散控制时,给定 O 2 浓度下的腐蚀率在 0 至 30°C 之间加倍。加速本体扩散的其他因素,例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面,也会加速腐蚀。这些因素解释了在海洋环境中在水线和飞溅区观察到的增强腐蚀。研究表明,腐蚀速率也会随着盐度的增加而增加,在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了微生物腐蚀 (MIC) 的信息,重点关注厌氧腐蚀。已经讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验计划。脱氧是正在提出的防止生物膜生成并因此减少微生物引起的腐蚀的技术之一。然而,普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
飞机起落架的承载重量超过 500 吨,飞行里程近 50 万公里,在整个生命周期内吸收着陆时的巨大冲击力。因此,每个起落架部件的材料选择和质量对于满足这些极其严格的要求以及降低起落架系统的维护成本至关重要。Aubert & Duval 与起落架制造商合作进行设计、仿真、3D 模型和加工工艺,以确保在关键起落架部件上最佳地使用钛、铝和高性能钢。
海军系统工程局 海军海上系统司令部 船舶完整性与性能工程组主任 Lattner 先生是海军海上系统司令部、海军系统工程局船舶完整性与性能工程 (SEA 05P) 的主任、技术领域经理和副授权官。在这个职位上,他负责领导和管理一支由 100 多名政府、军事和承包商人员组成的队伍,其中包括 38 名技术授权持有人,并监督作战中心 1000 多名人员能力领域的技术授权执行情况。核心工程功能包括水面舰艇、潜艇和航空母舰特征和敏感性、脆弱性、冲击、损害控制和消防、化学-生物防御、舰艇和潜艇结构完整性、结构深潜系统、腐蚀控制、金属和非金属材料、焊接、燃料和润滑剂、环境保护、重量、稳定性、流体动力学和所有现役和新采购舰艇和潜艇的布置。他向副指挥官/总工程师和海军系统工程局执行主任汇报。Lattner 先生的职业生涯始于 David Taylor 海军舰艇研究与开发中心(现为海军水面作战中心卡德罗克分部),担任项目工程师,负责目标强度降低和先进的潜艇制造技术。在他的职业生涯中,他担任过各种关键领导职务,责任、权力和义务的水平显著提高。其中包括 SEAWOLF 目标强度降低项目经理、指挥标准执行项目副经理、水面舰艇声学和非金属材料技术主管、材料部门负责人以及涂装卓越中心和海上环境质量项目经理。2019 年,Lattner 先生被选为海军海上系统司令部船舶完整性和性能工程组副组长。Lattner 先生拥有纽约州立大学布法罗分校机械工程学士学位和乔治华盛顿大学工程管理硕士学位。
GPS 完整性故障模式和影响分析的状态更新 Karen Van Dyke,DOT/Volpe 中心,Karl Kovach,ARINC,John Lavrakas,Overlook 系统 简历 Karen Van Dyke 是导航中心的项目负责人。Van Dyke 女士对 GPS 及其增强系统的航空应用在所有飞行阶段进行了可用性和完整性研究。她是 Volpe 中心团队的项目负责人,该团队为美国空军和 FAA 设计、开发和实施了 GPS 中断报告系统,这项工作已扩展到世界其他国家。Van Dyke 女士在马萨诸塞大学洛厄尔分校获得电气工程学士和硕士学位,并曾担任导航研究所所长。Karl Kovach 是加利福尼亚州埃尔塞贡多 ARINC 工程服务有限责任公司的技术总监。 Karl 已在 GPS 计划的各个方面工作了 24 年,其中包括在加利福尼亚州范登堡空军基地担任 GPS 控制段空军主管 3 年(1983-1986 年)。他于 1978 年获得加州大学洛杉矶分校机械工程学士学位。John W. Lavrakas 是 Overlook Systems Technologies, Inc. 的高级工程师,担任国防部 GPS 支持中心的运营支持总监。Lavrakas 先生在过去 22 年中一直从事 GPS 工作,支持 GPS 控制段、GPS 用户设备的开发
飞机结构的里程碑案例历史 飞机结构的里程碑案例历史 飞机结构的里程碑案例历史 飞机结构的里程碑案例历史 完整性 完整性 完整性 完整性
在数字时代,数据准确性和安全性对于确保信息系统运行良好非常重要。涉及在线风险和数据泄露时,旧的做事方式并不总是有效。本文介绍了如何使用区块链技术来通过转换数据安全性和完整性来使信息系统更安全,更可靠。区块链是一种自主记录系统,以透明和不变而闻名。这使其成为安全管理数据的绝佳选择。该研究探讨了如何将区块链添加到当前的计算机系统中,以减少脆弱性并更好地保护数据。首先,我们将讨论区块链技术背后的基本思想,例如其结构和使其安全性的加密方法。也讨论了不同类型的区块链,例如公共,私人和组区块链,以及如何在各种信息系统中使用它们。该研究表明,通过许多案例研究,如何在医疗保健,银行业和供应链管理等领域中使用区块链。在每个案例研究中,区块链的引入与更好的安全结果相关,例如未经许可访问或更改数据的尝试较少。本文还讨论了使用区块链的问题,例如如何使其可扩展,使用多少能量以及如何以遵循规则的方式使用。将来,研究人员应努力使区块链设置更好地工作,并找到可以与广泛信息系统一起使用的兼容解决方案。根据我们的研究,我们可以说区块链是提高数据安全性和完整性的好方法,但是需要考虑到系统特定的需求和可能的权衡来仔细整合。
4系统实施计算所需的问题(Piccinini 2015)与此问题有关。从与理解计算机科学家的实践相关的意义上,允许机器计算计算某种算法的功能可能与允许系统计算为实现意识的功能作用的功能不同。我们应该对功能组织的非计算解释开放(Piccinini 2010)。