间接互惠领域调查了当个人不断监视和相互评估的社交互动时,社会规范如何促进合作。通过遵守某些社会规范,合作可以提高其声誉,进而获得他人的好处。八个社会规范,称为“八个领导”,只要信息是公开且可靠的,就可以有效地促进合作的演变。这些规范将小组成员归类为“好”或“坏”。在这项研究中,我们研究了一个场景,在这种情况下,个人相互分配细微的声誉分数,并且只与那些超过一定阈值的人合作。我们通过分析和模拟来发现此类定量评估是错误纠正的,从而在信息是私人且不可靠的情况下促进了合作。此外,我们的结果确定了四个针对此类条件的特定规范,并且可能与维持自然人群的合作有关。
被动超材料是从波浪共振机理中受益的人造或自然结构。在声学中,它们已被广泛用于实现所需的波浪现象,例如声波衰减,[1-4]扩散,[5-9]单向传输,[10-12],例如声学二极管,[13]可折线二极管,[13]可直接fractive-fractive-fractive-fractive-fractive-fractive-ractive-Index介质,[14]拓扑任务,[21-24]等。其中,空气中的声音的吸收[25-32]代表了最重要的应用之一。与传统的被动声处理相比,超材料可以显着提高处理低频声波的效率,并使亚波长宽带吸收成为可能。在这种类型的元用户的设计过程中,应精确控制所采用的超材料的分散性能。在被动设计策略中,已经进行了广泛研究的单极或偶极类型的耦合分辨率(例如,请参见[25,26,33],[34]第3章,[34]第5章,[35]等第5章等)。在一维(1D)反射问题(具有刚性边界[36-38]或软边界[39])中,可以使用单个谐振器以给定的频率实现。[40,43]请注意,通过使用相同类型的两个谐振器,应适当选择它们在波动方向上的距离以产生其他类型的共振。[40,44]另外,可以考虑退化的谐振器[26,40],这是通过在波传播沿同一位置引入单极和偶极共振来实现的。在相反的情况下,在1D传输问题中,单极或偶极型谐振器可以实现的最大吸收系数为αmax= 1/2 [25,40–42];为了产生完美的吸收,至少需要两个耦合的谐振器,因为两种类型的共振都需要相同频率以同时抑制反射和传输。使用退化的谐振器通常会以更加困难的设计过程的价格实现空间紧凑的设计,以使其完美地吸收,因为Evanes-Cont耦合通常很重要。请注意,前面提到的策略是基于产生的镜像对称性
补充图1:减少的马尔可夫链建模评估动力学状态。A类型(S,K + L)的汇总状态,在其他玩家眼中对玩家1进行评估,而K + L的k + l播放器1的玩家数量评估为良好。它们具有K' + l'= k + l)的汇总状态(S,K',L'),内部(“隐藏”)过渡会改变K和L的值,同时保持其总和恒定。b,为了易于可视化,我们仅显示汇总状态并在以下说明马尔可夫链时省略了内部状态。请注意,内部状态可以确定从状态中的过渡。
h 吠舍离的利车族、拘尸那罗的末罗族、摩揭陀的阿阇昇王族、阿拉卡帕的恶霸族、波婆的末罗族、罗摩格拉玛的拘利族、迦毗罗卫的释迦族和毗陀地巴的婆罗门,每人都从火葬堆中获得了一部分遗物。佛塔将建在圣物上。
在室温下,在磷掺杂的N型钻石中实现了氮呈(NV)中心的最长自旋相干时间。然而,难以控制杂质掺入和化学蒸气沉积(CVD)技术在N型钻石的生长中的问题。在本研究中,使用TERT-叔丁基氨基的N-型钻石样品由CVD合成,叔丁基磷酸的毒性比磷酸少得多。发现氮的无意掺入被逐渐增加H 2和CH 4的气体流速抑制。发现自旋相干时间(t 2)随氮浓度的降低而增加,这表明氮浓度限制了T 2的长度。在氮浓度最低的样品中,t 2增加到1.62±0.10 ms。光学检测到的磁共振光谱表明,所有隔离的NV中心都沿[111]方向对齐。HALL测量结果证实了在不同生长条件下预先处理的三个测量样品中的N型传导。室温下最高测量的霍尔移动性为422 cm 2 /(v s)。这项研究提供了适当的CVD条件,可用于生长掺杂磷的N型钻石,并具有完美比对的NV中心,表现出长旋转相干时间,这对于生产量子钻石设备很重要。
摘要:由于存在强烈的失相过程,基于半导体量子点 (QD) 平台的单光子源 (SPS) 仅限于低温 (T) 操作。尽管 QD 在光腔中的集成可以增强其发射特性,但在高 T 下保持高不可区分性 (I) 的技术要求仍然超出了当前技术水平。最近,新的理论方法通过实现双偶极耦合发射系统已经显示出有希望的结果。在这里,我们提出了一个基于优化的五偶极耦合发射系统平台,该系统耦合到腔体,可在高 T 下实现完美的 I。在我们的方案中,使用完善的光子平台可以实现具有耗散 QD 的完美 I 单光子发射。对于优化过程,我们开发了一种新颖的机器学习方法,该方法可以显着减少高要求优化算法的计算时间。我们的策略为优化不同光子结构用于量子信息应用开辟了有趣的可能性,例如减少耦合的两级量子系统簇中的量子退相干。
CRISPR 碱基编辑技术倾向于编辑目标区域中的多个碱基,这限制了精确恢复疾病相关的单核苷酸多态性 (SNP)。我们设计了一种不完美 gRNA (igRNA) 编辑方法,该方法利用具有一个或多个与目标基因座不互补的碱基的 gRNA 来引导碱基编辑生成单碱基编辑产物。碱基编辑实验表明,与正常 gRNA 编辑相比,使用 CBE 的 igRNA 编辑大大增加了单碱基编辑分数,并且编辑效率更高。使用腺嘌呤碱基编辑器 (ABE) 也获得了类似的结果。在 DNMT3B、NSD1、PSMB2、VIATA hs267 和 ANO5 等基因座上,实现了近乎完美的单碱基编辑。通常,可以使用简单的协议从一组少数 igRNA 中选择具有良好单碱基编辑效率的 igRNA。作为概念验证,本研究使用 igRNA 构建了导致原发性高草酸尿症的疾病相关 SNP 细胞系。这项工作提供了一种使用 ABE 和 CBE 实现单碱基碱基编辑的简单策略,并克服了限制碱基编辑器用于治疗 SNP 相关疾病或创建携带疾病相关 SNP 的细胞系和动物模型的关键障碍。
Stephen J. Andriole是Villanova University的Thomas G. Labrecque商业技术教授,他在那里教书并指导了数字化转型方面的应用研究,新兴的数字