pHS 5、7和9的水凝胶。评估了AFGO浓度和培养基pH,并与悬浮液的微观结构和风湿性有关。使用改良的鹰嘴豆法合成氧化石墨烯(GO)纳米片,并通过微波辅助反应与三乙基环胺一起官能化以产生AFGO。纳米片的特征是不同的技术,例如扫描电子显微镜(SEM),热重分析,拉曼光谱和X射线光电光谱。悬浮液通过稳态和动态流,ZETA电位和冷冻-SEM进行微结构分析来通过流变学检验进行特征。所有样品均表现出粘性行为,并由Herschel - Bulkley方程进行建模。关于碱基水凝胶,在pH 9下制备的样品显示出较低的粘度,屈服应力和弹性模量。在所有pHS上,纳米片浓度的增加会促进屈服应力,粘度,存储和损失模量的下降。冷冻仪显示pH对碱基水凝胶结构的影响。也可以观察到纳米添加浓度的增加会影响卡伯波尔微凝胶肿胀并削弱悬架微结构。
从头抗体设计的生成AI模型的生成AI模型深度学习模型在抗体 - 抗原相互作用上训练,并结合了高通量湿LAB实验,因此可以将粘合剂设计到模型前从未见过的抗原,而没有进一步的亲和力成熟或铅优化。模型体系结构在虚线盒中描绘。模型输入和输出用背景中的灰色框描绘。对模型的输入由目标抗原结构和序列,目标表位区域和抗体框架序列组成。没有将CDR序列提供给模型作为输入。输入被处理到不变的输入表示中,并将其传递到MaskEdDesign模型中,该模型预测了停靠的抗体抗原复合物结构。预测的复合物被传递给设计CDR的IGMPNN。从头设计的HCDR被排序为库,并在体外进行筛选以绑定
DNA折纸纳米结构(DOS)是用于应用的有前途的工具,包括药物输送,生物传感,检测生物分子和探测染色质子结构。将这些纳米置换剂靶向哺乳动物细胞核可以提供有影响力的方法,用于探测,可视化和控制活细胞中的生物分子过程。我们提出了一种将DOS输送到活细胞核中的方法。我们表明,这些DO不会在细胞培养基或细胞提取物中经历可检测到的结构降解24小时。将DOS输送到人U2OS细胞的核中,我们结合了30纳米的纳米棒,其纳米棒具有针对核因子的抗体,特别是RNA聚合酶II的最大亚基(POL II)。我们发现,DOS在细胞中保持结构完整24小时,包括核内部。我们证明了电穿孔的抗POL II抗体结合的DOS被带回核中,并在细胞核内表现出次延伸的运动。我们的结果建立了与核因子的接口DOS,作为将纳米置换型传递到活细胞核中的有效方法。
第 2 章 腈基定向 C–H 官能化和还原脱氰化方法的开发...................................................................................................................................... 30
Q(mg co 2 /g ads)弯曲107 43 0.11 0.11 0.026 14.0 mont 245 52 0.33 0.043 0.043 10.1 paly 137 42 0.32 0.032 0.033 12.0 Sapo 151 69 0.16 0.16 0.16 0.040 15.40 15.4 SEPI 274 156 056 0.42 0.087 40.7 40.7 < /div>>
Golbarg M. Roozbahani 1,2, †, Patricia Colosi 3, †, Attila Oravecz 4,5,6,7, †, Elena M. Sorokina 3, Wolfgang Pfeifer 1,2, Siamak Shokri 1, Yin Wei 1, Yin Wei 1, Yin Wei 7,9 , Marcello Deluca 10, Gaurav Arya 10, LászlóTora4,5,6,7, *,Melike Lakadamyali 3,11,12, *,Michael G. Poirier 1,8,13, *和Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Castro 2,8, *Golbarg M. Roozbahani 1,2, †, Patricia Colosi 3, †, Attila Oravecz 4,5,6,7, †, Elena M. Sorokina 3, Wolfgang Pfeifer 1,2, Siamak Shokri 1, Yin Wei 1, Yin Wei 1, Yin Wei 7,9 , Marcello Deluca 10, Gaurav Arya 10, LászlóTora4,5,6,7, *,Melike Lakadamyali 3,11,12, *,Michael G. Poirier 1,8,13, *和Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Castro 2,8, *
在用于药物输送的各种靶向配体中,适体在近年来引起了很大的兴趣,因为与抗体相比,它们的尺寸较小,易于修饰和更好的批次到批量的一致性。另外,可以选择适体靶向已知甚至未知的细胞表面生物标志物。用于药物负荷,脂质体是最成功的载体,许多经FDA批准的配方基于脂质体。在本文中,审查了用于靶向药物输送的适体功能化脂质体。我们从相关的适体选择的描述开始,然后是将适体与脂质体和体内这种结合物的命运相结合的方法。然后审查了一些申请的示例。除了静脉注射全身传递并希望在目标部位积累,对于某些应用,还可以使适体/脂质体共轭物直接在目标组织(如肿瘤内注射)(例如通过粘附到角膜上)在眼表面上掉落。虽然先前的评论集中在癌症治疗上,但当前的评论主要涵盖了过去四年中的其他应用。最后,本文讨论了适体定位和一些未来研究机会的潜在问题。
即使多项研究先前表明,可以通过使用多价结合策略(例如二聚体或四聚体肽或链霉亲和链酰胺 - 生物 - 甲基化的肽Tamers,17 - 20 NanAnoparticle介导的多型多型多型多体)刺激性的多型较量的痕迹来改善肽结合的效果。纳米颗粒(NP)已成为一个有前途的平台,包括同一系统内有针对性诊断和治疗的方面,主要是在癌症治疗的中。21,22使用NP用于靶向药物的主要优势之一是它们具有具有广泛靶向部分的表面功能的能力,例如抗体,适体,小肽等。,23因此,为主动目标提供了可调的多价平台。24,25尽管对设计最佳靶向纳米医学的设计进行了持续的尝试,但仅发现一小部分(〜0.7%)到达目标部位。26此缺点可以归因于缺乏针对附加表面配体的数量和功能的鲁棒表征策略。27,28用于表征配体功能化的大多数常见方法取决于散装结果,未能考虑表面配体数和分布中粒子间和粒子内异质性,这对其生物学反应有直接的结果。29,30,显然需要进行表征技术,从而允许表面配体的稳定量化。33表面特性(例如价值)在确定NP的靶向电位及其随后的细胞命运中起着重要作用。31,32在过去几年中,人们对多价NP的发展有了很大的关注,以改善其生物学性能。27,33多价允许与多个受体同时结合,这与受体浓度截然不同,因此可以选择性地靶向肿瘤细胞,34,这是向个性化纳米医学转向个性化纳米医学的首选策略。
核定蛋白的蛋白质自组装偶氮修饰的蜘蛛丝蛋白用于制备具有固定在同一蛋白质涂层上的水凝胶样性能的纳米纤维网络中。在温和的水性环境中形成网络的厚度在2至60 nm之间,仅由蛋白质浓度控制。将蛋白质中的叠氮基团纳入纳米纤维上的短核酸序列,这些核酸序列可用于基于特定杂交的修饰,这是荧光标记的DNA互补证明的。使用脂质修饰符将DNA有效地掺入非辅助Jurkat细胞的膜中。基于核酸的互补性,可以使用可调细胞密度的纳米水凝胶上细胞上高度特异性的DNA辅助固定化。用竞争性寡核苷酸探针证明了DNA细胞到表面锚的可寻址性,从而迅速释放了75-95%的细胞。另外,我们开发了一个任意形状的微孔的基于光刻的图案,该图案在空间上定义了