mvis o o o o potable可变消息标志(VM)和智能运输系统(ITS)解决方案(以销售和租用)向英国一些最大的活动。专门从事太阳能事件的官能管理产品,MVI提供了帮助进行事件官方控制,事件安全/安全和方式发现的解决方案,从而帮助活动有效,安全地运行。
横纹肌肉瘤(RMS)是最常见的小儿软组织肉瘤。高危患者迫切需要更有效和毒性较小的疗法。肽引导的靶向药物输送可以增加封装药物的治疗指数并改善患者的福祉。要将此策略应用于RMS,我们在筛选肽与RMS细胞表面结合的肽中鉴定了肽F3。f3与核仁素结合,核酸素蛋白在RMS细胞的表面上,与健康组织相比,在RMS患者活检中,在mRNA水平上大量表达。,我们开发了F3装饰的pegypated Lipo躯体的快速微流体配方和化学治疗药物长春新碱的远程负载。的大小,表面电荷,药物负荷以及靶向脂质体的保留。增强的细胞结合和摄取。重要的是,对于RMS细胞系,带有长文克里斯丁蛋白的F3官能化脂质体的细胞毒性比非靶向脂质体高出11倍。这些结果策略表明,F3官能化的脂质体有望将有针对性的药物输送到RMS,并在体内进行进一步的保证。
当在水性培养基中混合两种类型的聚合物时,形成液态液相产生的液滴。这些复杂的凝聚力可能会捕获包括蛋白质酶在内的生物分子。核酸酶相对于稀释溶液中的核酸酶的活性改变了。我们以前报道说,单独的尿素聚合物可以形成一种简单的凝聚液,在冷却时加热和改革后溶解。在这项研究中,我们研究了通过冷却氨基官能官能化的尿素聚合物(丙烯酸氨基酶-co-co-arlylurea)(pau)的尿素聚合物(pau)的尿素聚合物(pau)诱导的简单凝聚液中DNA酶(10-23 dnazyme)的捕获的作用。冷却后,共聚物形成的共聚物液滴及其含量及其底物。与在没有聚合物的情况下,由于K M的显着降低,与没有聚合物的反应相比,DNAZYME在液滴中的活性显着增强,这意味着诱捕促进了酶 - 底物复合物的形成。因此,由PAU形成的冷却引起的液滴是dnazymes的有效反应培养基。
多孔碳是超级电容器的重要电极材料。超级电容器面临的挑战之一是在不依赖伪电容的情况下提高其能量密度,伪电容基于快速氧化还原反应,而这往往会缩短器件寿命。一种可能的解决方案是在由最少堆叠的石墨烯壁组成的高表面碳材料中实现高总电容(C tot),其中包括亥姆霍兹电容(CH)和可能的量子电容(CQ)。在本文中,采用模板法合成具有大致相同孔结构(≈2100m2g-1,平均孔径≈7nm)但含氧官能团(0.3–6.7 wt.%)和氮掺杂剂(0.1–4.5 wt.%)浓度不同的3D介孔石墨烯。因此,系统地研究了杂原子官能团对有机电解质中C tot的影响,不包括孔结构的影响。结果表明,杂原子官能基决定 C tot ,导致循环伏安曲线呈矩形或蝴蝶形。氮官能基由于 CQ 增加而显著增强 C tot 。
自组装单分子膜 (SAM) 广泛应用于有机场效应晶体管,以改变栅极氧化物的表面能、表面粗糙度、薄膜生长动力学和电表面电位,从而控制器件的工作电压。本研究使用 n 型多晶小分子半导体材料 N,N′-二辛基-3,4,9,10-苝二甲酰亚胺 (PTCDI-C8),比较了氨基官能化的 SAM 分子与纯烷基硅烷 SAMS 对有机场效应晶体管电性能的影响。为了了解氨基对电子的影响,系统地研究了含氨基官能团的数量和 SAM 分子长度的影响。虽然之前已经研究过氨基官能化的 SAM 材料,但这项研究首次能够揭示用极性氨基硅烷材料处理栅极氧化物时发生的掺杂效应的性质。通过对分子水平上的界面进行全面的理论研究,我们发现观察到的阈值电压偏移是由自由电荷引起的,这些自由电荷被 PTCDI-C8 吸引,并在那里被质子化的氨基硅烷稳定下来。这种吸引力和电压偏移可以通过改变氨基硅烷中性端链的长度来系统地调整。
硅是迄今为止微型电源行业中最重要的半导体材料,主要是由于Si/Sio 2接口的高质量。因此,需要化学官能化Si底物的应用集中在SIO 2表面的分子移植上。不幸的是,存在与氧化硅(SIO 2)上接枝的许多有机层的均匀性和稳定性的实际问题,例如硅烷和磷酸盐,与SI-O-SI和SI-O-P键的聚合和水解有关。这些问题刺激了在无氧化物Si表面上接管功能分子方面的努力,主要是在潮湿的化学过程中。因此,本综述直接集中于从H端的Si表面开始的无氧化物Si表面的湿化学表面功能化。首先总结了无氧化物H-终止SI的主要制备方法及其稳定性。官能化被分类为通过功能性有机分子(例如氢硅烷化)和其他原子直接取代的H-终止的间接取代(例如卤素)或小型官能团(例如哦,NH 2)可用于进一步反应。重点放在最近发现的方法上,以在其他无氧化物,无h端和原子平坦的Si(111)表面上产生官能团的纳米图案。这种模型表面特别有趣,因为它们使得能够获得表面化学反应的基本知识。关键字硅表面,氢终止,有机官能化,自组装单层,表面激活,纳米图案缩写SI,硅; Sio 2,氧化硅;山姆,自组装的单层; XPS,X射线光电子光谱; FT-IR,傅立叶变换红外; AFM,原子力显微镜; nn,最近的邻居; nnn,下一个最近的邻居; RT,室温; TFT,薄膜晶体管; ALD,原子层沉积; MPA,甲膦酸; ODPA,八烷基膦酸; DFT,密度功能理论; KMC,动力学蒙特卡洛; ML,单层; H,氢; T-bag,通过聚集和生长束缚;哦,羟基; UHV,超高真空; MOF,金属有机框架; SURMOF,表面金属有机框架; lbl,逐层; PL,光致发光; F,氟;
氧化石墨烯(GO)由于其机械,光学,电气和化学性质而引起了科学界的显着关注。本综述概述了综合方法进行功能化,包括涉及有机分子共价和非共价键的合成方法。在对这一领域的新贡献中,特别强调通过环氧环开放的功能化,这是一个研究和理解的主题。我们首先提供了石墨烯氧化石墨烯的基本结构和特性的概述。然后,我们探索用于使氧化石墨烯官能化的各种方法,并指出这些反应的复杂性,这些反应有时以非特定方式发生。但是,有一些针对性功能化的策略。此外,我们通过环氧基团对共价官能化进行了批判性分析,在选择反应培养基时表明要考虑的重要方面。碱性环境似乎有利于这种反应,并且在功能化反应中使用碱性pH的优点和缺点尚无共识。我们还展示了一些挑战,这些挑战涉及功能化的表征和确认,主要是在基础平面中,并且我们展示了可以在未来的研究中探索的表征技术的进步。最后,提出了一些当前的挑战和未来的研究指示,以促进该领域的发展。
系统Q ST0(KJ/mol)Q ST1(KJ/Mol)碳网络的IMA [5] 11.5 40.9 Ulberg和Gubbins [10] 4-12 30-40 Striolo等。[11] 6-14 50-60 Birkett and Do [17] 6.82-14.58 N/A N/A N guyen和Bhatia [18] 5-10 35-46表1:用于水面相互作用Q ST0和水 - 水 - 水 - 水面相互作用Q的等效热的吸附热量,在非官能化的Carbons上。
抽象的角膜是注射药物的主要障碍,这导致局部眼部治疗的生物幻想低和效力不佳。在这项工作中,我们首先使用猪角膜上的纸巾选择角膜结合适体。顶部两个丰富的适体(Cornea-S1和Cornea-S2)可能与猪角膜结合,其K D值与人角膜上皮细胞(HCEC)分别为361和174 n。适体官能化的脂质体载有环孢菌素A(CSA)作为干眼疾病的治疗方法。由于多价结合,角膜-S1或角膜-S2官能化的脂质体分别降低至1.2和15.1 n。在HCEC中,角膜-S1或Cornea-S2在15分钟内增强了脂质体的摄取,并将保留率延长至24小时。适体CSA脂质体获得了相似的抗炎和紧密连接调节效应,CSA的CSA比免费药物少十倍。在兔干眼病模型中,与商业CSA眼滴相比,Cornea-S1 CSA脂质体在维持角膜完整性和撕裂破裂时间方面表现出等效性,同时使用较低的CSA剂量。从角膜 - 塞莱克斯获得的适体可以用作眼药递送的一般配体,这表明有希望治疗各种眼部疾病甚至其他疾病的途径。