极性相互作用:围绕分子移动的价电子可能不会对称分布。最接近周期桌右上角的非金属元件 - 氮,氧,氟和氯 - 倾向于将共享电子从碳和氢中转移。当有一个具有其中一个元素的官能团时,它具有轻微的负电荷,其余的分子(碳和氢)略有阳性。分子是极化的。其正切片被邻近聚合物的负截面所吸引。主链中的碳原子始终遵循具有四个共价键的八位字规则,因此无法沿链条传递额外的电子。如果将聚合物纤维一起摩擦,则可以建立静电电荷。
功能单体的各种选择使我们能够为乳液聚合物配备独特的特性。由于建筑涂层被应用于各种底物上,因此请求不同的粘附特性。木材,矿物表面,金属或预涂层表面与涂层等底物的组合显示出不同的物理相互作用。因此,对于优化,必须选择附加到聚合物骨架上的官能团。在某些情况下,这种相互作用是通过在基板表面上的聚合物和活性功能之间形成的化学联系增强的。只能针对一种特定的底物(例如木材)进行优化,或者可以并行地将几个粘附启动子共同聚合,以确保按照“房屋涂料”的要求保证通用粘附性能。
分子光谱是分子与电磁辐射相互作用时的电子,振动和旋转激发的分析。它被广泛用作识别和表征材料定量和定性分析的分子的工具。摩尔的光谱是入射电磁辐射的测量吸收或发射。每个分子都为特定的光谱法产生独特的光谱,从而使光谱被用作分子的ngerprint。红外(IR)光谱法是一种光谱技术,它阐明了改变其偶极矩的分子的振动模式。1这些振动模式导致摩尔数在红外线区域吸收电磁辐射,该区域位于波数4000 - 400 cm-1的范围内。官能团在1500 cm - 1以上的峰区域中具有独特的吸光度,称为功能组区域。2
您将在实验室中学习如何安全处理和使用有机化学品。这将包括正确使用化学通风橱和个人防护设备。您将识别常见有机官能团(烷烃、烯烃、炔烃、烷基卤化物、醇、醚和胺)的化学性质,并测试这些物质的化学反应性。还将使用分子模型探索有机分子中的立体化学和手性概念。将遵循单步合成方案,并探索常见的合成有机技术。这些技术将包括液-液萃取、基于蒸馏、过滤和色谱的分离,以及通过熔点测定、红外光谱和色谱技术对有机分子进行简单表征。学分:3.0 先决条件:无 共同要求:化学 150 同等课程:无
烷烃:术语,双键(乙烯)的结构,几何异构主义,制备方法,物理性质,化学反应 - 添加氢。卤素,水,氢化氢(Markownikov的添加和过氧化物效应)。臭氧溶解,氧化,亲电的机理。Alkynes: Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of hydrogen, halogens, hydrogen halides and water, Aromatic hydrocarbons introduction, IUPAC nomenclature, Benzene resonance, aromaticity, chemical properties, mechanism of electrophilic substitution-nitration, sulphonation, halogenations弗里德尔·克拉特(Friedel Craft)的烷基化和酰化,官能团在单声道中取代苯的指令。
由于它们能够准确控制它们对外部刺激的反应,因此这些聚合物特别有吸引力。例如,研究人员可以通过在其结构中添加官能团来提高聚合物对特定污染物(包括金属离子或有机污染物)的选择性[9]。此外,刺激反应性聚合物可以集成到水凝胶或膜中,以增加可用于污染物吸附的表面积,并更好地控制过滤程序。他们的动态性质使创建“智能过滤器”可以立即适应水的环境,从而提高水净化的整体有效性。图1,还显示了如何对这些聚合物进行定制以应对环境中的特定变化。广泛使用刺激响应聚合物仍然相对较新。重要的研究领域仍包括成本,耐用性和聚合物降解产品的潜在环境影响。
掺杂氮的碳量子点是通过一步大气压微质量工艺合成的。使用一系列的光学和化学测量以及通过理论计算来研究观察到的光致发光发射及其与氮掺杂的关系。氮掺杂到核心和氧基团的表面状态的功能化产生了杂种结构,该结构造成了量子的发光量高达33%。载体乘积被视为量子产率中的阶梯状增强。对可见光发射的分析表明,发射的大部分源自表面状态,而不是由于量子点核心内的重组而引起的。表面官能团的作用在确定光学特性中的量子确定性上是主要的。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要:在远离现有功能的化学反应中对位点选环的控制仍然是合成化学的挑战。我们描述了一种策略,该策略使三个最常用的交叉耦合过程具有对带有酸性官能团的二氯烯烯的高位点选择性。我们通过重新利用已建立的磺化磷酸配体来利用其固有的分支性来实现这一目标。的机理研究表明,磺酸盐基团与去质子化底物的相关阳离子进行了有吸引力的静电相互作用,从而将交叉耦合引导至芳烃元位置的氯化物。在考虑与直接催化的非交互相互作用时,这种阴离子配体和阴离子底物恶魔的违反直觉组合构成了另一种设计原理。
监测粪便社区的传统方法是劳动和专业知识密集的,并且通常效率低下。最近,非侵入性环境DNA(EDNA)元法编码已被试用,用于粪便相关无脊椎动物的生物监测(Sigsgaard等。,2021年)。结果是有希望的,有几个官能团,并且生态关联很明显。在这里,我们使用类似的EDNA技术进行了一个小型试点项目,以评估使用牲畜粪便样品监测英国牧场的粪甲虫和更广泛的无脊椎动物社区。该项目的成功可以证明粪便无脊椎动物DNA调查的倾向,以监测土壤管理实践和再生耕作的影响,从而导致土壤生物多样性增加。