摘要目的:用脑部计算机界面系统对运动皮层激活进行神经反馈训练可以增强中风患者的恢复。在这里,我们提出了一种新方法,该方法训练与运动性能相关的静止状态功能连接,而不是与运动相关的激活。方法:使用神经反馈和源功能连通性分析和视觉反馈,将十个健康受试者和一名中风患者在其手运动区域和其他大脑之间受过训练的α波段连贯性。结果:十分之一的健康受试者中有7个能够在一次疗程中增加手运动皮层和其他大脑其他大脑之间的α波段连贯性。慢性中风的患者学会了增强其受影响的原发性运动皮层的α波段连贯性,该病神经皮层在一个月内应用了一个月。连贯性在靶向运动皮层和α频率中特别增加。这种增加与中风后运动功能的临床有意义且持久的改善有关。结论:这些结果提供了概念证明,即对α波段连贯性的神经反馈训练是可行的,并且在行为上是有用的。意义:该研究提供了证据表明α波段在运动学习中的作用,并可能导致新的康复策略。1简介大脑界面(BCI)的技术可以监测大脑活动和生成有关活动模式特定变化的实时输出。这特别显示了有关感觉运动节奏(SMR)的表明。记录的受试者会收到有关与他/她的努力相关的神经活动的反馈,因此可以学会自愿调节大脑活动(Kamiya,1969)。SMR对应于α和β频率(〜8-30 Hz)中感觉运动皮层中神经元基的活性,这被真实或想象中的运动抑制(Arroyo等,1993; Pfurtscheller等人,2006年)。人类自愿调节SMR的能力导致BCI的发展用于运动替代,即控制假体和机器人设备(Galan等,2008; McFarland等,2008)。BCI技术的最新应用包括通过反馈训练大脑模式。在神经居住中,神经反馈的兴趣主要在于它可能改善脑部病变患者恢复的潜力(Birbaumer等,2007; Daly等,2008)。运动康复的神经反馈主要旨在训练SMR调节(Buch等,2008; Broetz等,2010; Caria等,2011; Ramos-Murguiarlday等,2013),因此可以看作是对运动成像训练的支持(Mattia等人(Mattia等,2012)。
ez-way EZ-Way®是一种用于控制和导航移动机器人的软件,是一种用于控制和导航移动机器人的软件,可确保流畅有效的操作。确保流畅有效的操作。安装在每台计算机上,它可以保证移动机器人管理,机器人本地化,导航和任务执行。作为开发移动机器人的加速器,EZ-Way®精简并增强了机器人功能。软件EZ-Way®
自发现胰岛素以来,低血糖一直是糖尿病患者最佳血糖结局的障碍。国际低血糖研究小组定义了低血糖的三种生化分类:1级,低于≤3.9mmol/L; 2级,低于≤3.0mmol/l;和第3级,基于生理和认知反应的阈值,严重的低血糖(需要第三方辅助)1,2。对糖尿病患者的日常功能和生活质量(QOL)的不同方面的这些水平对糖尿病患者的不同方面的不同影响知之甚少。在过去的十年中,测量间质葡萄糖的连续葡萄糖监测(CGM)设备在临床实践中越来越多地使用,研究表明,低血糖的发作明显多于毛细血管血糖(CBG),具有八个
肌肉营养不良,需要心脏移植,在明显的骨骼肌受累之前6年。神经肌肉疾病。1999; 9(8):598-600。 22。 Wu RS,Gupta S,Brown RN等。 在肌营养不良患者中进行的腹腔直接移植后的临床结局。 j心脏肺移植。 2010; 29(4):432-438。 23。 Hanke SP,Gardner AB,Lombardi JP等。 BARTH综合征中的左心室非压实心肌病:一个起伏的心脏表型的例子,需要机械囊性支撑作为移植的桥梁。 儿童核心。 2012; 33(8):1430-1434。 24。 Feingold B,Mahle WT,Auerbach S等。 美国心脏协会心脏病患者心力衰竭委员会Y,Y,临床C委员会,心血管委员会R,心血管委员会R,干预委员会,功能性G,Translations B,Stroke B,Stroke C.心脏参与的管理与Neuromuscu-神经司法疾病有关:与美国心脏协会的科学疾病有关。 循环。 2017; 136(13):E200-E231。1999; 9(8):598-600。22。Wu RS,Gupta S,Brown RN等。在肌营养不良患者中进行的腹腔直接移植后的临床结局。j心脏肺移植。2010; 29(4):432-438。 23。 Hanke SP,Gardner AB,Lombardi JP等。 BARTH综合征中的左心室非压实心肌病:一个起伏的心脏表型的例子,需要机械囊性支撑作为移植的桥梁。 儿童核心。 2012; 33(8):1430-1434。 24。 Feingold B,Mahle WT,Auerbach S等。 美国心脏协会心脏病患者心力衰竭委员会Y,Y,临床C委员会,心血管委员会R,心血管委员会R,干预委员会,功能性G,Translations B,Stroke B,Stroke C.心脏参与的管理与Neuromuscu-神经司法疾病有关:与美国心脏协会的科学疾病有关。 循环。 2017; 136(13):E200-E231。2010; 29(4):432-438。23。Hanke SP,Gardner AB,Lombardi JP等。 BARTH综合征中的左心室非压实心肌病:一个起伏的心脏表型的例子,需要机械囊性支撑作为移植的桥梁。 儿童核心。 2012; 33(8):1430-1434。 24。 Feingold B,Mahle WT,Auerbach S等。 美国心脏协会心脏病患者心力衰竭委员会Y,Y,临床C委员会,心血管委员会R,心血管委员会R,干预委员会,功能性G,Translations B,Stroke B,Stroke C.心脏参与的管理与Neuromuscu-神经司法疾病有关:与美国心脏协会的科学疾病有关。 循环。 2017; 136(13):E200-E231。Hanke SP,Gardner AB,Lombardi JP等。BARTH综合征中的左心室非压实心肌病:一个起伏的心脏表型的例子,需要机械囊性支撑作为移植的桥梁。儿童核心。2012; 33(8):1430-1434。 24。 Feingold B,Mahle WT,Auerbach S等。 美国心脏协会心脏病患者心力衰竭委员会Y,Y,临床C委员会,心血管委员会R,心血管委员会R,干预委员会,功能性G,Translations B,Stroke B,Stroke C.心脏参与的管理与Neuromuscu-神经司法疾病有关:与美国心脏协会的科学疾病有关。 循环。 2017; 136(13):E200-E231。2012; 33(8):1430-1434。24。Feingold B,Mahle WT,Auerbach S等。美国心脏协会心脏病患者心力衰竭委员会Y,Y,临床C委员会,心血管委员会R,心血管委员会R,干预委员会,功能性G,Translations B,Stroke B,Stroke C.心脏参与的管理与Neuromuscu-神经司法疾病有关:与美国心脏协会的科学疾病有关。循环。2017; 136(13):E200-E231。2017; 136(13):E200-E231。
1医学物理系,IRCCS Azienda Ospedaliero-Universitaria di Bologna,意大利博洛尼亚; 2纽约纽约的纪念斯隆·凯特林癌症中心医学物理部; 3威斯康星大学 - 威斯康星州麦迪逊分校放射学系; 4马里兰州格伦·伯尼(Glen Burnie)核医学研究所; 5澳大利亚新南威尔士州瓦格·瓦格(Wagga Wagga)查尔斯·斯特特大学(Charles Sturt University)牙科与健康科学学院; 6康涅狄格州纽黑文市耶鲁大学医学院放射学和生物医学成像系; 7密苏里州圣路易斯的华盛顿大学生物医学工程和Mallinckrodt放射学院; 8拉脱维亚拉脱维亚大学临床与预防医学研究所; 9纽约纽约的纪念斯隆·凯特林癌症中心放射学系;纽约纽约市威尔·康奈尔医学院放射学系10; 11加利福尼亚州戴维斯戴维斯分校生物医学工程系;瑞士伯尔尼大学核医学系12; 13加拿大不列颠哥伦比亚大学不列颠哥伦比亚大学放射学系; 14放射学和放射科学系,约翰·霍普金斯医学院,马里兰州巴尔的摩; 15瑞士日内瓦日内瓦大学医院核医学和分子成像司; 16荷兰格罗宁根大学医学中心格罗宁根大学核医学与分子成像系; 17加拿大不列颠哥伦比亚省的不列颠哥伦比亚大学放射与物理学系;和18 United Theranostics,贝塞斯达,马里兰州
摘要:folfoxiri,即5-脂肪酸,奥沙利铂和伊立替康的组合是对结直肠癌(CRC)的第一线治疗,但非人性化和侵略性。在这项研究中,为了模仿被诊断为晚期CRC并接受Folfoxiri长期治疗的患者的临床状况,我们已经生成了用Folfoxiri长期治疗的CRC细胞克隆。与未得到治疗的调用相比,在所有四个细胞系中,对Folfoxiri的敏感性均显着损失,如2D培养和异型3D共培养所示。通过在肌动灯的组织中形态变化观察到获得的耐药性诱导。块状RNA测序表明,在SW620抗性细胞系中,葡萄糖转运蛋白家族5(GLUT5)的重要上调,而在LS174T耐药细胞系中,蛋白质酪氨酸磷酸酶磷酸酶S(PTPRS)的显着下调和氧气磷酸化酶脱氢酶含量(oxoglutarate eDhifeNAPE)(蛋白酪氨酸磷酸化酶受体S(PTPRS)的显着下调。通过RAS-RAF-MEK-ERK途径作用的优化的低剂量协同药物组合(ODC)克服了对Folfoxiri的抗性。ODC抑制了SW620和LS174T 3DCC中的细胞代谢活性,分别抑制了高达82%。
摘要。在过去几个世纪中,经济学中一直存在的一个矛盾无疑是辩证唯物主义与唯心主义之间的二分法,这种二分法最终奠定了结构与上层建筑之间的基础,并提出了过去几个世纪面临的重要哲学问题。这种矛盾最终也进入了决定论者/自由主义者和干预主义者之间的经济视野,两者都被实证主义和数学理性所吞噬,而忽略了任何先验维度。基于这些假设,本文试图介绍经济现象学的基本原理,经济现象学是现象学的一个分支,它研究经济学的主要思想形成,以回应经济实证主义,这种实证主义忽略了任何先验维度,并提出了经济学科学中的问题,例如:我们想要什么样的社会?在此背景下,经济现象学的原理从主体(意图)与物质性、noesis 和 noema 的关系中形成(Noesis 是意图,是主观维度。Noema 是主观的客体思想),它总是预设一个概念,一个可以在日常生活中解释的想法。在这个方向上,它还提出了经济现象学的前提、方法、一些概念和理论。其中包括本体论理性、人民权利要求、中观经济和工资理论等概念,以解释经济体系背后的生活愿景。 关键词:经济学;实证主义;现象学;理论;本体论 对本文的引用应如下: Vigliarolo,F。2020。经济现象学:基础、原理和定义。区域发展洞察,2(1),418-429。 http://doi.org/10.9770/IRD.2020.2.1(2)
6。Baizabal-Carvallo JF,帕金森主义Jankovicj。额颞痴呆中的运动和遗传学的动荡和遗传学。nat Rev Neurol。2016; 12:175-185。 7。 Lomen-Hoerth C,Anderson T,Miller B. 杏仁性的侧面硬化症和额颞痴呆的重叠。 神经病学。 2002; 59:1077-1079。 8。 Dubois B,Feldman HH,Jacova C等。 促进阿尔茨海默氏病的研究诊断标准:IWG-2标准。 柳叶刀神经。 2014; 13:614-629。 9。 Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2016; 12:175-185。7。Lomen-Hoerth C,Anderson T,Miller B.杏仁性的侧面硬化症和额颞痴呆的重叠。神经病学。2002; 59:1077-1079。 8。 Dubois B,Feldman HH,Jacova C等。 促进阿尔茨海默氏病的研究诊断标准:IWG-2标准。 柳叶刀神经。 2014; 13:614-629。 9。 Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2002; 59:1077-1079。8。Dubois B,Feldman HH,Jacova C等。促进阿尔茨海默氏病的研究诊断标准:IWG-2标准。柳叶刀神经。2014; 13:614-629。9。Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。Jack CR,Bennett DA,Blennow K等。NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。阿尔茨海默氏症痴呆症。2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2018; 14:535-562。10。Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。nat Rev Neurol。2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2013; 9:241-242。11。Rademakers R,Neumann M,Mackenzie IR。了解额颞痴呆的分子基础的进步。nat Rev Neurol。2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2012; 8:423-434。12。Moore KM,Nicholas J,Grossman M等。症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。柳叶刀神经。2020; 19:145-156。13。Premi E,Grassi M,Van Swieten J等。认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。大脑。 2017; 140:1784-1791。大脑。2017; 140:1784-1791。14。Rohrer JD,Nicholas JM,Cash DM等。在遗传额颞痴呆倡议(GENFI)研究中,遗传额颞痴呆症的症状性认知和神经解剖学变化:横断面分析。柳叶刀神经。2015; 14:253-262。 15。 STACKARONI AM,COBIGO Y,GOH S-EM等。 个性化的动物分数可以预测家族性额颞叶变性中的痴呆发作。 阿尔茨海默氏症的痴呆症。 2020; 16:37-48。 16。 Pottier C,Zhou X,Perkerson III RB等。 额颞Lobar变性和GRN突变患者的疾病风险和年龄的潜在遗传改性剂:全基因组关联研究。 柳叶刀神经。 2018; 17:548-558。 17。 Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。 j阿尔茨海默氏症。 2021:1-16。 18。 Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。2015; 14:253-262。15。STACKARONI AM,COBIGO Y,GOH S-EM等。个性化的动物分数可以预测家族性额颞叶变性中的痴呆发作。阿尔茨海默氏症的痴呆症。2020; 16:37-48。16。Pottier C,Zhou X,Perkerson III RB等。额颞Lobar变性和GRN突变患者的疾病风险和年龄的潜在遗传改性剂:全基因组关联研究。柳叶刀神经。2018; 17:548-558。 17。 Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。 j阿尔茨海默氏症。 2021:1-16。 18。 Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。2018; 17:548-558。17。Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。 j阿尔茨海默氏症。 2021:1-16。 18。 Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。j阿尔茨海默氏症。2021:1-16。18。Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Ibanez A,Yokoyama JS,Possin KL等。多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。前神经。2021; 12:1-16。19。Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Parra MA,Baez S,SedeñoL等。拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。阿尔茨海默氏症的痴呆症。2021; 17:295-313。20。Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Ryan B,Baker A,Ilse C等。诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。21。n Z Med J。2018; 131:88-91。 Mackenzie IR,Neumann M.皮层下TDP-43病理学验证皮质FTLD-TDP亚型,并展示了C9orf72突变病例的独特方面。 acta neuropathol。 2020; 139:83-98。 22。 Jones DT,Knopman DS,Graff-Radford J等。 在体内18F-AV-1451 tau PET信号中的Maptmmuntriers中的tau PET信号随预期的tau iso形式而变化。 神经病学。 2018; 90:E947-54。 23。 Bevan-Jones RW,Cope TE,Jones SP等。 [18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。 Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,2018; 131:88-91。Mackenzie IR,Neumann M.皮层下TDP-43病理学验证皮质FTLD-TDP亚型,并展示了C9orf72突变病例的独特方面。acta neuropathol。2020; 139:83-98。22。Jones DT,Knopman DS,Graff-Radford J等。 在体内18F-AV-1451 tau PET信号中的Maptmmuntriers中的tau PET信号随预期的tau iso形式而变化。 神经病学。 2018; 90:E947-54。 23。 Bevan-Jones RW,Cope TE,Jones SP等。 [18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。 Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,Jones DT,Knopman DS,Graff-Radford J等。在体内18F-AV-1451 tau PET信号中的Maptmmuntriers中的tau PET信号随预期的tau iso形式而变化。神经病学。2018; 90:E947-54。 23。 Bevan-Jones RW,Cope TE,Jones SP等。 [18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。 Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,2018; 90:E947-54。23。Bevan-Jones RW,Cope TE,Jones SP等。[18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,Ann Clin Transl Neurol。2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,2018; 5:1292-1296。24。Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,Karikari T,Pascoal T,Ashton N等。等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。柳叶刀神经。2020。在印刷中。25。Janelidze S,Mattsson N,Palmqvist S等。血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,
(a)国家有权使用国家数据提供的承包商提供的Genai培训数据,其中可能包括非公开数据。国家应保留州数据使用中的所有所有权和知识产权,以增强Genai培训数据。(b)承包商有权检查提出的任何公共数据以增加Genai培训数据,例如通过请求访问,副本或数据报告,以验证其遵守合同条款和条件。3。genai的其他安全要求:除了一般规定的第13、21和22条外,承包商应允许国家合理访问Genai安全日志,延迟统计数据以及其他影响该合同和生成数据的相关Genai安全数据,无需支付国家。4。数据和提示的机密性:承包商应防止未经授权的使用和披露承包商根据本合同开发的任何提示,以及此类提示产生的任何生成的数据。5。提示和生成内容中的权利: