摘要:植物进化产生的酶可能不是最大程度地提高当今农业环境和植物生物技术应用的最佳产量和质量。通过提高酶的性能,应减轻动力学特性或酶不稳定当前对产量和质量的约束。酶,这需要在体外突变靶基因,并筛选或选择突变的基因产物为所需的特征。连续定向进化是一个更有效,更可扩展的版本,它通过靶基因的易于发达的复制以及宿主细胞的生长速率与靶基因功能的偶联来完成诱变和选择步骤。但是,已发布的连续系统需要自定义的质粒组件,并且不可用的多功能平台。我们讨论了两个适合于酿酒酵母中的酶连续进化的系统,在大肠杆菌中的葡萄糖和evolvr,以及我们的试点效应,以适应每个系统,以用于高通用植物酶工程。为了测试我们的修改系统,我们使用了硫胺素合成酶Thi4,该酶先前鉴定为改进的主要候选者。我们适应的矫正系统显示出对有效植物酶工程的希望。
选择性酶的进化。[1b] 最新的评论包含大量有关方法学开发的信息,发表于 2020 年。[1c] 我们对这项激动人心的事业的兴趣可以追溯到 20 世纪 90 年代中期,当时我的团队提出了一种全新的不对称催化方法,即定向进化立体选择性酶作为合成有机化学和生物技术中的催化剂。[1,2] 考虑到手性药物、天然产物、植物保护剂和香料的社会价值,我们认为“试管中的进化”可以与开发用于不对称转化的手性人造合成催化剂相辅相成。如果成功,这将为在温和且环保的条件下进行多种不同的不对称转化提供丰富且取之不尽的新型催化剂来源。
RNA 引导的核酸内切酶(如 Cas9)可在细胞中提供有效的靶向基因组编辑,但也可能切割整个基因组中的脱靶位点。化脓性链球菌 Cas9 (SpCas9) 的工程变体已被开发出来以全面降低脱靶活性,但个别脱靶可能仍然存在,或者靶向活性可能受到损害。为了在保持强大的靶向编辑的同时对抗特定脱靶的活性,我们开发了一种新颖的 M13 噬菌体介导选择方法。使用这种方法,连续几轮正向和负向选择用于识别增强或减弱特定基因组序列编辑活性的 Cas9 突变。我们还引入了寡核苷酸定向靶标扫描诱变 (SMOOT),这是一种全面的诱变方法,用于创建高度多样化的 Cas9 变体库,这些库可以通过基于噬菌体的选择进行挑战。我们的平台识别出新的 SpCas9 突变体,这些突变体在生化测定和 T 细胞中减轻了对脱靶的切割,同时保持了比以前描述的变体更高的靶向活性。我们描述了一种进化的变体,S . pyogenes Adapted to Reduce Target Ambiguity Cas9 (SpartaCas),它由最丰富的突变组成,每个突变的功能未知。这种进化的 Cas9 突变体减少了脱靶切割,同时保留了对多个治疗相关靶标的有效编辑。使用我们的系统对 Cas9 进行定向进化展示了一种改进的结构独立方法,可以有效地设计核酸酶活性。
图 1. SPAAC 与 DBCO-PEG4-Fluor545 反应过程中形成的有机(β-D-葡萄吡喃叠氮化物)与无机(叠氮化钠)叠氮化物的三唑产物表现出不同的相对荧光强度。A) DBCO-PEG4-Fluor 545 与叠氮化物的点击化学或 SPAAC 反应产生的三唑产物取决于与 DBCO 部分反应的有机叠氮化物与无机叠氮化物的类型。这里显示了在 37°C 下 1X PBS 缓冲液(pH 7.4)中 DBCO-PEG4-Fluor 545 (200 µM) 与叠氮化钠或 β-D-葡萄吡喃叠氮化物 (400 µM) 底物发生 SPAAC 反应期间观察到的三唑部分特定吸光度 (B) 和整体产物荧光 (C) 的相对变化。有趣的是,虽然吸光度没有差异,但有机叠氮化物和无机叠氮化物的 SPAAC 反应产物的最终荧光读数明显不同。请注意,吸光度是在 309 nm 处测量的,而荧光是在 550 nm 激发和 590 nm 发射(570 nm 截止)处测量的。灰色方块和红色圆圈分别对应于在指定时间点收集的无机叠氮化物和有机叠氮化物的实验数据。线
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aic.16814