• 对距离、间隙、速度等判断错误 • 视觉错觉导致的错误感知。影响视觉表现的情况: — 毫无特征的地形(如沙漠、干湖、水、雪地)。 — 黑暗和能见度差。 — 烟雾和不断变化的烟雾形状。 — 山地地形或倾斜的跑道。 — 导致闪烁眩晕的异常灯光效果。 — 物体与背景对比度低或照明度差。 — 观看明亮的阳光或月光。 — 阴影。 — 白茫茫的雪景。 • 空间定向障碍和眩晕。影响身体位置感的情况: — 失去视觉线索。 — 不良医疗状况或生理状况(酒精和药物影响、宿醉、脱水、疲劳等)。 — 上下移动头部、前后张望以换取收音机、接听或使用手机。 • 失去态势感知。类型: — 地理定向障碍(如偏离路线、失去位置意识)。 — 普遍丧失情境意识(如无法察觉危险情况)。 — 错误的情况评估(误解情况或条件)。 — 无法预测或预期变化的情况。 — 错误假设确认偏差(持续错误感知或误解情况)。 • 注意力不集中(如在获得正确信息时无法监控或做出反应)。 类型: — 无法目视车辆或设备外部的危险情况。 — 遗漏清单项目。 —
目标:我们测试六足模拟器中的某个程序是否会导致航空公司飞行员对倾斜角(即“倾斜”)做出错误假设以及对姿态指示器 (AI) 做出错误解释。背景:倾斜对解释错误的影响此前已在非飞行员中得到证实。飞行中,由于误导性的滚转提示(空间定向障碍)可能会出现错误的假设。方法:飞行员(n = 18)进行了 36 次试验,要求他们仅使用 AI 滚转至机翼水平。在显示 AI 之前,他们会收到滚转提示,在大多数试验中,提示与 AI 倾斜角方向相匹配,但在倾斜相反条件下(四次试验),提示方向相反。在基线条件下(四次试验),他们没有收到滚转提示。为了测试飞行员是否对 AI 做出反应,AI 有时会在倾斜水平条件下(四次试验)按照滚转提示显示机翼水平。结果:总体而言,飞行员在倾斜-相反条件下(19.4%)犯的错误明显多于基线条件(6.9%)或倾斜-水平条件(0.0%)。倾斜-相反条件下的学习效果明显,因为 38.9% 的飞行员在第一次接触这种条件时犯了错误。经验(即飞行小时数)没有显著影响。结论:倾斜程序可有效诱导飞行员的 AI 误解和控制输入错误。应用:该程序可用于空间定向障碍演示。
摘要:精神运动性躁动是痴呆患者常见的行为和情绪症状。血管性痴呆治疗非认知症状(如躁动和精神病症状)的方法很少。我们介绍了一名 71 岁男性的病例,该患者因精神错乱综合征和四聚体共济失调而处于血管重建窗口期。检查发现:精神运动性躁动、色盲、自我定向障碍、时间和空间定向障碍、卡普格拉综合征的复杂视觉幻觉、面部失认症和运动失视症。脑 CT 显示基底动脉顶部血栓形成,采用机械血栓切除术和动脉内血栓形成治疗。脑成像显示枕叶、海马旁回、舌回、旁正中脑桥水平和小脑病变存在组成性病变。患者出现严重精神运动性躁动,并出现战略性梗塞性痴呆。作为一种治疗方法,减轻躁动的英雄组合是:奥氮平和左美丙嗪(两种镇静性神经安定药)、丙戊酸(胸腺稳定剂)和地西泮。我们强调,对于有中风等心血管风险的患者,需要对严重精神运动性躁动和精神病性躁动采取英雄治疗方案。在这种情况下,我们介绍了使用奥氮平和左美丙嗪的有益结果。我们强调,需要对严重精神运动性躁动病例制定广泛的治疗指南。
夜间,在没有人造照明的平淡地形上飞行,和/或有云或雾,对目视飞行规则 (VFR) 直升机紧急医疗服务 (HEMS) 任务来说,是一种危险的操作条件 (HOC)。1 据报道,天气是 HEMS 飞行员遇到的最大危险。23 每次飞行前,HEMS 飞行员都必须检查天气数据,并最终根据评估结果做出拒绝、接受、继续或推迟任务的最终决定。1 该决定是一项关键的预防性风险控制,可避免遇到非视觉气象条件 (non-VMC),因此飞行员可以保持 VFR 所要求的视觉空间定位。1,11 在能见度降低的 VFR 下夜间飞行,看不到视觉提示或地平线,是空间定向障碍的理想条件。17
人体并不是一个封闭的系统——无论飞行员多么希望如此。他们也不能在以音速飞行的八小时飞行中途停下来进站。因此,排尿可能是个大问题。典型的解决方法是限制飞行前摄入的液体(“战术脱水”),或将尿液排入特制的“排尿袋”中。这两种选择同样危险,而且非常危险。仅仅 3% 的脱水就会导致飞行性能下降 57%,手眼协调能力下降、视力受损、空间定向障碍和 G 力耐受力下降。除了直接后果之外,习惯性脱水会导致肾结石、慢性肾病和终生膀胱功能障碍。但使用排尿袋可不只是麻烦这么简单。到 2001 年,空军已将其使用与 9 起 A 级事故联系起来,这些事故导致人员伤亡或损失超过 100 万美元
虽然历史上敏捷飞行问题最初被视为机身敏捷性问题,因此强调加速问题,但对敏捷性的理解已经发生了演变。WG 27 成立的目的是研究敏捷飞机的人为因素影响,它采纳了 WG 19 的建议,即飞机敏捷性只是敏捷性的一个方面,当与武器敏捷性和系统敏捷性相结合时,就会产生“操作敏捷性”。 我们采访的经验丰富的飞行员看到了对敏捷飞机的真正操作需求。他们一致认为高攻角/机头指向和离轴导弹/头盔显示器/瞄准系统都是非常重要的能力。他们否认与加速或空间定向障碍有关的生理问题,尽管迄今为止他们的飞行都是在晴朗的天空下主动控制的。
摘要 本文对平视显示器 (HUD) 进行了文献研究,重点关注了 HUD 在民航业中的作用。目的是简要介绍 HUD 的历史,总结基本设计,描述 HUD 在当今民航中的作用,并从人为因素的角度介绍 HUD。这包括描述人类信息处理行为和人类与仪器扫描技术相关的空间定向障碍以及最常见的感官错觉。还总结了不同飞行阶段的 HUD 符号。一些主要信息来源是 Richard L. Newman 的著作《平视显示器:设计前进之路》(1995 年)和 Stoke 的《显示技术》(1990 年)。主要结论是 HUD 有助于在高负荷飞行阶段(如起飞、进近和着陆)进行仪器扫描,从而提高态势感知能力、飞行精度和飞行安全性。它还为航空公司提供了一种经济有效的替代方案,以实现低能见度运营。
作者简介:Shappell 博士是俄克拉荷马州俄克拉荷马市联邦航空管理局民用航空医学研究所人为因素研究部门经理。他负责管理先进空中交通管制系统、行为压力源和机组人员表现方面的研究项目。此外,他还继续使用与 Douglas Wiegmann 博士合著的人为因素分析和分类系统 (HFACS) 对民用和军用航空事故进行研究。他在航空事故调查、空间定向障碍、持续操作、驾驶舱伤害和机组人员疲劳等领域发表了 60 多篇论文和一本书籍。Douglas A. Wiegmann 博士是伊利诺伊大学香槟分校人为因素系的终身教授。他是人为错误分析和事故调查领域的国际公认专家,曾担任美国海军航空心理学家和美国国家运输安全委员会 (NTSB) 事故调查员。他撰写了大量有关人类表现和系统安全的文章和会议演讲。Wiegmann 博士是一名获得认证的人为因素专家和私人飞行员。
现役军人和退伍军人经常遭受 TBI 的影响,而爆炸是一种常见的受伤机制。1-5 根据头部受伤导致的神经功能障碍的持续时间以及通过格拉斯哥昏迷量表 (GCS) 评估的临床症状,TBI 目前分为轻度、中度或重度。6 轻度 TBI (mTBI) 在普通人群和军队中最为常见 7 ,其特征是 GCS 评分为 13-15、精神错乱或定向障碍持续时间少于 24 小时,以及意识丧失 (LOC) 长达 30 分钟,并可能伴有持续不到 24 小时的记忆丧失。6 TBI 会引发不良健康相关后果的逐渐发展,甚至 mTBI 也可能导致持续性症状,包括躯体、认知和情绪或行为问题。 8 此外,各种受伤前和受伤后的因素(例如社会和环境因素、人口因素、精神健康障碍)都可能导致 TBI 后成瘾行为的产生,包括酒精滥用和 AUD。