对于许多消费者而言,个人健康监测设备的可用性增加对饮食和生活方式修改的方式增加了兴趣,这可能会影响与健康和福祉的各种标志有关的日常测量。血糖监测已超越患有糖尿病(如糖尿病)的患者的扩展,即健康意识的消费者有兴趣更多地了解其个人对饮食和生活方式选择的反应。这包括从积极的生活方式消费者到坚持低碳水化合物饮食的每个人。对包括血糖控制在内的代谢健康问题主题的兴趣已在美国公众中越来越大。此外,在探索个性化营养和生活方式计划的新领域的社交媒体影响者越来越受欢迎,积累了大量的卫生,技术上的消费者。
方法论:RNA与全血或骨髓分离并反转录。所得的cDNA经过多重PCR扩增,旨在扩增P190,P210或P230 BCR-ABL1融合转录本,涉及ABL1外显子2。ABL1参考基因也被放大以进行标本质量控制并确保RNA的完整性。PCR产物通过毛细管电泳解决,并评估存在表明阳性结果的扩增子的存在。阳性普通P210或P190结果将触发定量P210或P190测试,以提供定量水平作为监测治疗反应的诊断基线。p210的成绩单水平报告为国际量表百分比(%is)。P190转录水平报告为归一化拷贝数(NCN)。这些定量结果被整合到最终报告中。如果初始定性测试为阴性,或者检测到罕见的P230,则不会进行反射测试。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
气候变化以温度和降雨的长期趋势为特征,近年来已经成为一个突出的关注(Seddon等,2016),对森林和草原生态系统的全球碳,水和能量周期产生了重大影响。此外,极端天气事件的频率增加可能会对各种陆地生态系统产生毁灭性后果(IPCC,2023年)。为了进一步研究气候变化对森林和草原生态系统的影响,并支持中国达到其达到其峰值二氧化碳排放和碳中立目标的努力,提出了这一研究主题。该研究主题包括23篇原始研究文章和1篇意见文章,介绍了以下领域的最新进展:(1)森林和草地生态系统响应气候变化的碳,水以及能量循环,以及(2)植被特征和生态系统稳定性的响应和适应性。
3.1子宫内膜癌从子宫内壁开始。症状可能包括阴道出血,骨盆疼痛,意外的体重减轻,恶心和疲劳。大约23%的子宫内膜癌患者的亚型具有较高的微卫星不稳定性(MSI-H)或DNA不匹配修复(DMMR)缺乏生物标志物。子宫内膜癌对预期寿命和生活质量都有重大影响。患有晚期或复发性子宫内膜癌的患者(这意味着癌症已经超过子宫超出了子宫或以前的治疗后回来)的预后不佳。只有15%在第4阶段诊断出5年或更长时间。影响不仅限于身体健康,而且还限于人们及其家人的心理健康和福祉。患者专家强调,此阶段有效的治疗选择有限,使人们感到沮丧,绝望和抛弃。他们强调了缺乏
调查结果五个AI聊天机器人功能在电子商务上下文中被确定为相关,即界面,功能,个性化建议,数据安全和语言样式。这些功能被证明会影响客户对AI聊天机器人的看法。发现高可用性和有用性可导致积极的在线客户。与此相反,感知到的隐私风险必须较低,以带来积极的客户体验。为了感知到的人类风格,有必要找到一个平衡,即聊天机器人被认为具有适当水平的人类风格,以带来积极的客户体验。显示客户的看法对客户体验产生积极和负面影响。最后,证明了两个影响因素,使用AI技术和对数据隐私的态度的经验会影响客户的看法。
2型糖尿病(T2DM)在21世纪(国际糖尿病联合会(IDF),2022年)以惊人的速度增长。T2DM及其并发症在所有地区都带来了沉重的疾病负担(Ali等,2022)。确定与T2DM发展有因果关系的因素可以为预防疾病提供重要的证据基础,并促进新治疗策略的发展。肠道菌群(GM)是一个复杂的生态系统,由大约4×10 13种共生细菌,原生动物,真菌,古细菌和病毒组成(Chen等,2021; Martino等,2022)。gm参与了人体的各种生理活性,例如代谢,炎症过程和免疫反应(Fan and Pedersen,2021; Gill等,2022)。越来越多的证据表明,转基因在T2DM等代谢疾病中起重要作用(Gurung等,2020)。T2DM患者患有代谢疾病和慢性炎症状态,并伴有GM障碍(Yang等,2021)。还发现了GM组成的变化与T2DM的发展以及相关并发症的显着关联(Iatcu等,2021),例如,门类细菌群/企业的不平衡与近距离渗透性相关联,与近距离渗透性相关联,并渗透性渗透性,伴有细胞质,伴有细胞质,并渗透性,并伴有细胞处理效果。随后的DM的炎症反应特征(Iatcu等,2021)。也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。 尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。 孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。 由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险
无定形硅及其合金,由于其物质及其生产性,在近年来引起了迅速增长的兴趣。非晶技术比晶体技术的主要优势大大降低了成本,以至于某些消费者应用,例如太阳能电池,薄纤维晶体管等。太阳能电池在电信中涉及远离电网的基站电力电力。然而,基于A-SI的设备的表现受光,高能量颗粒,载体注入,载体在A-SI相互之间的堆积和热淬灭[1]引起的可逆,亚稳态变化的限制[1]。所有这些效应都是通过退火到高度高温而可逆的,并且所有这些效应都被相同的降解机制引起[2]。由于在A-Si:H中发现了亚稳态效应,因此有强有力的间接证据表明氢和掺杂剂的作用仍然缺乏完全的证明。证据主要源于在与亚竞争效应相同的温度下观察到的氢运动。缺陷退火的活化能与氢二氮的活化能相当。此外,掺杂趋势是相同的 - 掺杂剂会导致较大的水力差异系数也导致了更快的缺陷弛豫。另一方面,氢通过削减由粘结障碍引起的大量悬挂键缺损而使掺杂成为可能。亚稳态变化的种类和大小取决于氢和掺杂剂这种磷或硼。这些效果取决于在掺杂的氢化无定形硅中,存在两个不同现象的共膜质:悬挂键密度的可逆增加和掺杂效应的可逆增加。
