摘要:光谱扩散(SD)代表实施固态量子发射器作为无法区分光子来源的实质性障碍。通过在低温温度下对单个胶体量子点进行高分辨率发射光谱,我们证明了量子限制的Stark效应与SD之间的因果关系。通过统计分析发射光子的波长,我们表明,提高过渡能量对应用电场的敏感性会导致光谱波动的扩增。这种关系在定量上适合直接模型,表明在微观尺度上存在随机电场,其标准偏差平均为9 kV/cm。当前方法将使SD在多种类型的量子发射器(例如固态缺陷或有机铅卤化物钙钛矿量子点)中进行研究,对此,光谱不稳定性是量子传感应用的关键障碍。关键字:量子光学元件,胶体量子点,光谱扩散,鲜明效果,激子细胞结构
摘要:本文提出了一种具有单端特性的 6T 单元,以提高稳定性、降低能耗、降低漏电功率。该单元与规格优良的 10 和 12 晶体管结构进行了比较。然而,上述结构设计为具有最佳参数,尺寸小,晶体管数量最少,从而减小了单元尺寸。在某些参数方面,例如写入噪声容限,该结构与其他结构相比具有最佳优点,甚至高于 12 和 10 晶体管的结构。通过切断要写入为“1”的存储节点的下拉路径来增强写入操作;读取操作无需切断下拉路径即可执行。在 VDD=0.4V 时,与传统的 6T 相比,所提出的结构的静态功率、读取容限、写入容限、读取能量和写入能量分别优越 33%、50%、215%、9% 和 5%。与标准 6T 结构相比,电气质量指标 (EQM) 参数提高了约十倍,表明新结构的价值已经得到体现。对 32nm 技术中 5,000 次读写产量的蒙特卡洛模拟表明,我们的单元产量比典型的 6T 单元高出 2 倍和 3.4 倍。因此,对于需要低能耗和高稳健性的应用,建议的 6T 单元是一个合适的选择。
马克西米利安 W. Feil1,2,Maximilian W. Feil1,2,Maximilian W. Feil1,2,Maximilian W. Feil1,2,Maximilian W. Feil1,2,A ∗,Katja Waschneck1,B,B,B,Hans Reisinger1,C,C. ER1,C,Paul Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,∗,Katja Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3 3,F,∗,Katja Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,F,∗,Ka tja Waschneck1,B,B,Hans Reisinger1,C,C,C,D,D,Gerald,Gerald,Gerald,aiching b.1 Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,∗,Katja Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3,E,E,E,Thomas Aichinger3,F,F,F,Thomas aichinger3,F,F,f,katja reisinger,salmen,salmen,salmen,thom thom thom 3, A Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,
弗莱特纳转子是垂直圆柱体,位于风锋处,根据马格努斯原理工作,取决于风速和风向,从而推动船舶 [1]。我们在一艘集装箱船上安装了四个现代弗莱特纳转子(图 1),其作用是捕获和利用风能,以用于船舶推进。这些转子不是主要的推进来源,但有助于降低燃料消耗,根据船舶大小、航行区域和运行模式,可降低 3% 至 15% 的燃油消耗。这种推进模式仅适用于具有自由甲板的船舶,因为弗莱特纳转子捕获的风锋不能受到干扰。要应用这种额外的推进模式,必须仔细分析所选船舶的特性。使用弗莱特纳转子时,水平面上会出现力,这些力与马格努斯效应相结合,会改变船舶的稳定性,还可能有剪断转子支撑杆的危险。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
存在一些文献数据,这些数据是关于角膜角质层的超微结构,材料组成和硬化性的,及其对昆虫视力的影响,[9-12] hove- verver,从未建立过结构性和生物化学因素与角膜类色皮的生物力学特性之间的Quantative联系。这一点尤其重要,因为作为昆虫外骨骼的一部分,眼睛不仅应该具有良好的光学特性,而且还应该能够抵抗机械应力。例如,化合物的眼睛应该能够防止昆虫的头部损伤,保持脑乳突之间的机械稳定性并支持内部神经系统。[13]当前,使用现有数据,我们几乎无法解释角膜角质层机械稳定性背后的机制,尤其是知道富含固定蛋白的角质层(1-60 MPa)的弹性模量太低,无法允许观察到的稳定性。[14]
摘要。本文介绍了将 Flettner 气球作为风能捕获系统对集装箱船稳定性的影响。Flettner 气球是一种电力发电机,充满氦气,绕水平轴旋转,并通过电缆输送电力。它响应风力绕水平轴旋转,有效地产生清洁、可再生的电力,成本低于所有竞争系统。作者确定的本文主要观点是:计算影响气球的力,计算气球对船舶横向和纵向稳定性的影响,计算船舶新排水量、新吃水、新 GM 和横摇周期。作为本文的结论,读者会发现船舶的横向稳定性会随着 0.01 的小值而略有下降,而纵向稳定性将提高 0.7532。本文表明,安装在集装箱船上的 Flettner 气球是一种捕获风能的可行概念。
摘要 本文主要研究涵道风扇垂直起降 (VTOL) 无人机 (UAV) 的过渡控制。为了实现从悬停到高速飞行的稳定过渡,提出了一种基于神经网络的控制器来学习系统动态并补偿飞机动态和所需动态性能之间的跟踪误差。首先,我们推导了飞机全包络动力学的非线性系统模型。然后,我们提出了一种基于神经网络的新型控制方案并将其应用于欠驱动飞机系统。所提出的控制器的主要特征包括投影算子、状态预测器和动态形成的自适应输入。证明并保证在整个神经网络学习过程中,状态预测器和神经网络权重的跟踪误差都有上限。高度自适应的输入形成动态结构,有助于实现所提出的控制器可靠的快速收敛性能,尤其是在高频扰动条件下。从而使飞行器的闭环系统能够以期望的动态性能跟踪一定的轨迹,仿真和实飞试验均取得了满意的结果,完成了设计的飞行路线。
2025-02-13本出版物的自算帖子印刷版可在Linköping大学机构存储库(Diva)上获得:https://urn.kb.se/resolve?urn= urn= urn= urn:se:se:liu:diva-2097752
立方体卫星越来越多地被指定用于要求严格的天文和地球观测任务,在这些任务中,精确指向和稳定性是关键要求。立方体卫星很难达到这样的精度,主要是因为它们的转动惯量很小,这意味着即使是很小的干扰扭矩,例如由剩磁矩引起的扭矩,也会对纳米卫星的姿态产生重大影响,当需要高度的稳定性时。此外,硬件在功率、重量和尺寸方面的限制也使这项任务更具挑战性。最近,萨里大学开展了一项博士研究计划,以研究立方体卫星的磁特性。研究发现,通过良好的工程实践,如减少使用导磁材料和最小化电流环路面积,可以减轻干扰。本文讨论了纳米卫星干扰的主要来源,并介绍了一项调查和简要介绍磁性清洁技术,以最大限度地减少剩磁场的影响。它的主要目的是为立方体卫星社区提供指导,以设计未来具有改进姿态稳定性的立方体卫星。然后,我们介绍了迄今为止对立方体卫星和纳米卫星的残余磁偶极子测定新技术的发现。该方法通过在航天器上实施八个微型三轴磁力仪网络来执行。它们用于在轨道上实时动态确定航天器的磁偶极子的强度、方向和中心。该技术将有助于减少磁干扰的影响并提高立方体卫星的稳定性。开发了一个软件模型和一个使用八个通过 Raspberry-Pi 控制的磁力仪的硬件原型,并使用 Alsat-1N 立方体卫星的吊杆有效载荷和为验证目的而开发的磁空心线圈成功进行了测试。引用本文:A. Lassakeur、C. Underwood、B. Taylor 和 R. Duke,《立方体卫星和纳米卫星的磁清洁度计划以提高姿态稳定性》,《航空航天技术杂志》,第 13 卷,第 1 期,第 25-41 页,2020 年 1 月。