6.4 设置电压、电流和定时器................................................................................................................................ 17 6.4.1 设置电流和电压.................................................................................................................................... 17 6.4.2 在 Biometra P25T 型号上设置定时器................................................................................................ 20 6.4.3 检查电流和电压....................................................................................................................................... 20 6.4.4 功率限制....................................................................................................................................................... 21
数据充斥着整个世界。联网汽车和智能工厂提供了大量新的物联网数据流,网络点击流、社交媒体和其他渠道可以收集到种类繁多的结构化和非结构化消费者数据。再加上来自企业系统(ERP、CRM、PLM、供应链、WMS 等)的传统数据,很快就会发现汽车制造商现在可以访问以前从未有过的大量信息。在这个数据丰富的生态系统中,最善于利用数据进行分析和实现业务流程现代化的竞争对手将在利用新机会和降低风险方面获得先发优势。
长期以来一直在寻求二维(2D)狄拉克半学和随之而来的超导性,但很少报道。据信,由于其内在的轻质和金属性,光元素材料有可能实现这一目标。在这里,基于最近合成的β12氢化唯一的唯一苯二酚,我们研究了其名为β12 -b 5 h 3的对应物。我们的第一个原理计算表明它具有良好的稳定性。β12-b 5 H 3是一个稀缺的狄拉克半学,表明了从三个狄拉克锥到单个狄拉克锥的应变可调相变。此外,β12-B 5 H 3也是一种上语音介导的超导体,超导临界温度为32.4 k,并且在外部应变下可以进一步提高到42 K。补充了双重可调性的狄拉克费米和超导性的同意,揭示了β12-b 5 h 3是一个有吸引力的平台,可以在2D DIRAC半学或超导性或超级传导性或相互作用带来的外来物理学中研究量子相变。
目的:开发一种机器学习模型,用于预测自然周期中宫内授精或定时性交 (TI) 的排卵时间和最佳受精窗口。设计:一项回顾性队列研究。地点:一家大型体外受精单位。患者:2018 年至 2022 年间接受 2,467 次自然周期 - 冷冻胚胎移植周期的患者。干预措施:无。主要结果测量:预测实施授精或 TI 的最佳日期的准确性。结果:数据集被分成一个包括 1,864 个周期的训练集和 2 个测试集。在测试集中,排卵是通过专家意见或由 2 名独立的生育专家确定排卵日(“专家”)(496 个周期)或根据连续 2 天的超声检查之间主要卵泡的消失来确定的(“确定排卵”)(107 个周期)。训练了两种算法:一种是 NGBoost 机器学习模型,用于估计每个周期发生排卵的概率;一种是治疗管理算法,使用学习模型来确定最佳授精日或是否应进行另一次血液测试。最后一次测试的雌二醇孕酮和黄体生成素水平是该模型使用的最具影响力的特征。“确定排卵”和“专家”测试集的平均测试次数分别为 2.78 和 2.85。在“专家”组中,92.9% 的病例中,该算法正确预测了排卵并建议在第 1 天或第 2 天进行授精。在 2.9% 的病例中,该算法预测为“失误”,这意味着上次测试日已经是排卵日或以后,建议避免进行授精。在 4.2% 的病例中,该算法预测为“错误”,建议进行授精,但事实上应该在非最佳日期(0 或 3)进行。“确定排卵”组也有类似的结果。结论:据我们所知,这是第一项仅基于血液测试实施机器学习模型以高精度安排授精或 TI 的研究,这归因于算法能够整合多种因素而不是仅仅依赖黄体生成素激增。引入该模型的功能可能会提高排卵预测的准确性和效率,并增加受孕的机会。临床试验注册号:HMC-0008-21。(Fertil Steril 2023;120:1004 – 2023 年 12 月,美国生殖医学会。)本文最后提供西班牙语版本。
a 德克萨斯 A & M 大学,动物科学系,德克萨斯州大学城 77843,美国 b 德克萨斯 A & M 农业生命研究中心,德克萨斯州奥弗顿 75684,美国 c 西北密苏里州立大学,农业科学学院,密苏里州玛丽维尔 64468,美国 d 南达科他州立大学,动物科学系,南达科他州布鲁金斯 57007,美国 e 阿肯色州立大学,农业学院,阿肯色州琼斯伯勒 72467,美国 f 田纳西大学,动物科学系,田纳西州诺克斯维尔 37996,美国 g 科尔比社区学院,堪萨斯州科尔比 67701,美国 h 新墨西哥州立大学,动物与牧场科学系,新墨西哥州拉斯克鲁塞斯 88003-8003,美国 i 佐治亚大学,动物与奶制品科学系,佐治亚州雅典 30602,美国 j 堪萨斯州立大学,西北研究与推广中心,美国堪萨斯州科尔比 67701 k 德克萨斯 A & M 大学科默斯分校农业科学与自然资源学院,美国德克萨斯州科默斯 75428 l 密西西比州立大学草原研究中心,美国密西西比州草原 39756
毒素 - 抗毒素(TA)系统是细菌用来调节噬菌体防御等细菌过程的普遍存在的两基因基因座。在这里,我们演示了一种新型III型TA系统AVCID的机制,并激活了对噬菌体感染的抵抗力。系统的毒素(AVCD)是一种脱氧胞苷脱氨酶,将脱氧胞苷(DC)转化为脱氧尿苷(DU),而RNA抗毒素(AVCI)抑制AVCD活性。我们已经表明,AVCD在噬菌体感染时脱氨基核苷酸脱氨基核苷酸,但是激活AVCD的分子机械词是未知的。在这里我们表明,AVCD的激活是由噬菌体诱导的宿主转录抑制,导致不稳定AVCI的降解。AVCD激活和核苷酸耗竭不仅减少噬菌体复制,而且还增加了缺陷的噬菌体形成。令人惊讶的是,AVCID不抑制的T7等噬菌体的感染也导致AVCI RNA抗毒素降解和AVCD激活,这表明AVCI的耗竭不足以赋予对某些噬菌体的保护。相反,我们的结果支持像T5这样较长复制周期的噬菌体对AVCID介导的保护敏感,而像T7这样的复制周期较短的噬菌体具有抗性。
给定一个闭二维流形或曲面上的大小为 L 的环或更一般的 1-循环 r(用三角网格表示),计算拓扑学中的一个问题是它是否与零同源。我们在量子环境中构建和解决这个问题。给定一个可以用来查询闭曲线上边的包含情况的 oracle,我们设计了一个用于这种同源性检测的量子算法,相对于环 r 上边的大小或边数,其运行时间为常数,只需要使用一次 oracle。相比之下,经典算法需要使用 Ω( L ) oracle,然后进行线性时间处理,并且可以通过使用并行算法将其改进为对数时间。我们的量子算法可以扩展以检查两个闭环是否属于同一个同源类。此外,它可以应用于同伦检测中的一个特定问题,即检查闭二维流形上的两条曲线是否不是同伦等价的。
摘要:受自然发生的调节机制的启发,这种机制允许在基因表达和生物途径中实现具有可编程延迟的复杂时间脉冲特征,我们在此展示了一种在基于 DNA 的链置换反应 (SDR) 中实现时间编程脉冲输出信号的策略。为了实现这一点,我们合理设计了输入链,一旦与目标双链结合,就可以逐渐降解,从而产生脉冲输出信号。我们还设计了阻断链,以抑制链置换并确定产生脉冲反应的时间。我们表明,通过控制阻断链和输入链的降解率,我们可以在 10 小时的范围内精细地控制延迟脉冲输出。我们还证明,通过利用输入链和阻断链的降解反应的特异性,可以在同一溶液中正交延迟两种不同的脉冲反应。最后,我们在此展示了这种延迟脉冲 SDR 的两种可能应用:DNA 纳米结构的时间编程脉冲装饰以及基于 DNA 的图案的顺序出现和自擦除形成。
美国、中国和俄罗斯。中东和非洲萨赫勒地区的挑战也相当大。在挪威,跨部门安全挑战越来越受到关注,显然社会安全和国家安全之间的区别正在变得模糊。在我发布军事建议的同时,挪威国防委员会和全面准备委员会也将提出建议。我将继续为制定国防部门的下一个长期计划提供军事建议。我们的政治家必须根据目前呈现给他们的所有信息做出短期和长期的选择和优先事项。我期待进一步的讨论,但还是想说,在早期阶段确定明确的优先事项是绝对必要的。武装部队必须进一步加强,而且加强需要迅速进行。武装部队既处于有利位置,也已做好进一步发展和成长的准备——为了我们的共同安全。
Esra KENDİR TEKGÜL * Şerafettin YALTKAYA ** 收到日期:2022 年 3 月 31 日;修订日期:2022 年 12 月 26 日;接受日期:2023 年 3 月 30 日 摘要:在 Co-60 源的伽马射线辐射下研究了商用 555 单定时器和 741 运算放大器 (op-amp)。使用的最大总剂量为 2 kGy 和 4 kGy 进行辐照。观察到 555 单定时器电路频率的异常行为,在 744 Gy 伽马射线辐射下从 202 Hz 降至 195 Hz。在 741 运算放大器电路的结果中,741 运算放大器的幅度信号在 4 kGy 伽马剂量下显示最大值 -0.054 dB,其斜率从 4 V/µs 降至 0.65 V/µs。555 单定时器具有两个 pn 结,这导致 555 单定时器很容易受到伽马辐射的影响。因此,必须对集成电路进行测试以确定其在辐射环境中的电阻极限。