您做什么-Minsk-和-luciana-儿童书籍:童年和阅读概念。理论与实践(Campinas)0102387X 38 115 129 HTTP:\\ dx.doi.org \ 10.34112/2 317-0972A202020V38N78P115-115-115-129 B
堆积作用的显著增加是高亮度 (HL) LHC 运行阶段物理项目面临的主要实验挑战之一。作为 ATLAS 升级计划的一部分,高粒度计时探测器 (HGTD) 旨在减轻前向区域的堆积效应并测量每束团的光度。HGTD 基于低增益雪崩探测器 (LGAD) 技术,覆盖 2.4 到 4.0 之间的伪快速度区域,将提供高精度计时信息,以区分在空间上靠近但在时间上相隔很远的碰撞。除了具有抗辐射功能外,LGAD 传感器还应在寿命开始时为最小电离粒子提供每轨 30 ps 的时间分辨率,在 HL-LHC 运行结束时增加到 75 ps。本文介绍了 2021-2022 年 CERN SPS 和 DESY 使用测试光束研究的来自不同供应商的几种辐照 LGAD 的性能。这项研究涵盖了 LGAD 在收集电荷、时间分辨率和命中效率方面的有希望的结果。在大多数情况下,对于高辐照传感器(2.5 × 10 15 n eq / cm 2 ),测量的时间分辨率小于 50 ps。
摘要 尽管时间是生命的一个基本维度,但我们不知道大脑各个区域如何协作来跟踪和处理时间间隔。值得注意的是,对学习过程中神经活动的分析很少,主要是因为计时任务通常需要很多天的训练。我们研究了当动物学习计时 1.5 秒间隔时,时间编码是如何演变的。我们设计了一种新颖的训练方案,让大鼠在一次训练中从幼稚到熟练的计时表现,这让我们能够研究非常早期学习阶段的神经元活动。我们使用药理学实验和机器学习算法来评估内侧前额叶皮层和背侧纹状体的时间编码水平。我们的结果显示,在时间学习过程中,内侧前额叶皮层和背侧纹状体之间存在双重分离,前者致力于早期学习阶段,而后者在动物熟练掌握任务时参与其中。
脉冲时间的影响是我们了解如何有效调节基底神经节丘脑皮质 (BGTC) 回路的重要因素。通过电刺激丘脑底核 (STN) 产生的单脉冲低频 DBS 诱发电位可以洞察回路激活,但长延迟成分如何随脉冲时间的变化而变化尚不清楚。我们研究了在 STN 区域传递的刺激脉冲之间的时间如何影响 STN 和皮质中的神经活动。在五名帕金森病患者的 STN 中植入的 DBS 导线被暂时外化,从而可以传递脉冲间隔 (IPI) 为 0.2 至 10 毫秒的成对脉冲。通过 DBS 导线和头皮 EEG 的局部场电位 (LFP) 记录来测量神经激活。 DBS 诱发电位是使用通过联合配准的术后成像确定的背外侧 STN 中的接触器计算的。我们使用小波变换和功率谱密度曲线量化了不同 IPI 对跨频率和时间的诱发反应幅度的影响程度。STN 和头皮 EEG 中的 DBS 诱发反应的 β 频率内容随着脉冲间隔时间的增加而增加。间隔 < 1.0 ms 的脉冲与诱发反应的微小变化相关。1.5 到 3.0 ms 的 IPI 使诱发反应显著增加,而 > 4 ms 的 IPI 产生适度但不显著的增长。当 IPI 在 1.5 到 4.0 ms 之间时,头皮 EEG 和 STN LFP 反应中的 β 频率活动最大。这些结果表明,DBS 诱发反应的长延迟成分主要在 β 频率范围内,并且脉冲间隔时间会影响 BGTC 电路激活的水平。
许多关键信息系统依赖于通过共享网络(例如互联网)进行通信。通过此类网络的数据通常很敏感,需要保密。如果不小心处理,私人数据、身份验证码、时间信息或本地化等信息可能会被网络上的任何人访问。这可能会导致安全攻击以检索或更改敏感数据 [Kan+07;HZN09;Mod+13]。为了防止此类入侵,已经开发了各种安全方法和协议。然而,这些安全决策并不总能避免入侵。为了分析信息系统的安全性并突出其弱点,自关键信息系统出现初期就开始使用 FMEA(故障模式影响和危害性分析)[Xu+02;Cas+06] 等技术标准。此后,人们开始探索更加结构化、基于模型的方法,例如 ADVISE 方法 [LeM+11],该方法可以自动生成定量指标或形式化模型,例如团队自动机 [BLP05] 和攻击树 [KPS14]。
许多关键信息系统依赖于通过共享网络(例如互联网)进行通信。通过此类网络的数据通常很敏感,需要保密。如果处理不当,私人数据、身份验证码、时间信息或本地化等信息可能会被网络上的任何人访问。这可能会导致安全攻击以检索或更改敏感数据 [Kan+07;HZN09;Mod+13]。为了防止此类入侵,已经开发了各种安全方法和协议。然而,这些安全决策并不总能避免入侵。为了分析信息系统的安全性并突出其弱点,自关键信息系统出现初期就开始使用 FMEA(故障模式影响和危害性分析)[Xu+02;Cas+06] 等技术标准。此后,人们开始探索更加结构化、基于模型的方法,例如 ADVISE 方法 [LeM+11],该方法可以自动生成定量指标或形式化模型,例如团队自动机 [BLP05] 和攻击树 [KPS14]。
许多关键信息系统依赖于通过共享网络(例如互联网)进行通信。通过此类网络的数据通常很敏感,需要保密。如果处理不当,私人数据、身份验证码、时间信息或本地化等信息可能会被网络上的任何人访问。这可能会导致安全攻击以检索或更改敏感数据 [Kan+07;HZN09;Mod+13]。为了防止此类入侵,已经开发了各种安全方法和协议。然而,这些安全决策并不总能避免入侵。为了分析信息系统的安全性并突出其弱点,自关键信息系统出现初期就开始使用 FMEA(故障模式影响和危害性分析)[Xu+02;Cas+06] 等技术标准。此后,人们开始探索更加结构化、基于模型的方法,例如 ADVISE 方法 [LeM+11],该方法可以自动生成定量指标或形式化模型,例如团队自动机 [BLP05] 和攻击树 [KPS14]。
许多关键信息系统依赖于通过共享网络(例如互联网)进行通信。通过此类网络的数据通常很敏感,需要保密。如果处理不当,私人数据、身份验证码、时间信息或本地化等信息可能会被网络上的任何人访问。这可能会导致安全攻击以检索或更改敏感数据 [Kan+07;HZN09;Mod+13]。为了防止此类入侵,已经开发了各种安全方法和协议。然而,这些安全决策并不总能避免入侵。为了分析信息系统的安全性并突出其弱点,自关键信息系统出现初期就开始使用 FMEA(故障模式影响和危害性分析)[Xu+02;Cas+06] 等技术标准。此后,人们开始探索更加结构化、基于模型的方法,例如 ADVISE 方法 [LeM+11],该方法可以自动生成定量指标或形式化模型,例如团队自动机 [BLP05] 和攻击树 [KPS14]。
税收是延期的,而不是免除的。第 1031 条的一个普遍误解是税收是免除的。然而,事实是,在某个时候,税收是要缴纳的。事实上,2020 年 Ling & Petrova 的研究发现,通过交换获得的绝大多数 (80%) 财产后来在应税交易中出售,此时要缴纳税款。请注意,剩余的 20% 包括所有非应税转让,例如:后续交换、止赎、征用权、分割或其他法院命令的转让、离婚、合伙解散、赠与和死亡。此外,三分之一的交换在交换年度内缴纳了一些税款,因为收到了一些应税补偿。
摘要:高粒度定时探测器(HGTD)是ATLAS二期升级的重要组成部分,用于应对极高的堆积密度(平均每个束流团穿越的相互作用次数可达200次)。利用径迹的精确定时信息(σt~30ps),可以在“四维”空间进行径迹到顶点的关联。传感器选用低增益雪崩探测器(LGAD)技术,可提供所需的定时分辨率和良好的信噪比。日本滨松光子学株式会社(HPK)已生产出厚度为35 μm和50 μm的LGAD,中国科学技术大学也与中国科学院微电子研究所(IME)合作开发并生产了50 μm LGAD样机。为评估抗辐照性能,传感器在JSI反应堆设施中接受中子辐照,并在中国科学技术大学进行测试。在室温(20 ℃ )或−30 ℃ 下,通过I-V和C-V测量表征辐照对增益层和本体的影响。提取了击穿电压和耗尽电压,并将其表示为通量函数。受体去除模型的最终拟合得出HPK-1.2、HPK-3.2和USTC-1.1-W8的c因子分别为3.06×10 −16 cm −2、3.89×10 −16 cm −2和4.12×10 −16 cm −2,表明HPK-1.2传感器具有最耐辐照的增益层。采用一种新颖的分析方法进一步利用数据得到c因子与初始掺杂浓度之间的关系。关键词:LGAD;HGTD;定时探测器;硅探测器中图分类号:TL814文献标识码:A