摘要:受自然发生的调节机制的启发,这种机制允许在基因表达和生物途径中实现具有可编程延迟的复杂时间脉冲特征,我们在此展示了一种在基于 DNA 的链置换反应 (SDR) 中实现时间编程脉冲输出信号的策略。为了实现这一点,我们合理设计了输入链,一旦与目标双链结合,就可以逐渐降解,从而产生脉冲输出信号。我们还设计了阻断链,以抑制链置换并确定产生脉冲反应的时间。我们表明,通过控制阻断链和输入链的降解率,我们可以在 10 小时的范围内精细地控制延迟脉冲输出。我们还证明,通过利用输入链和阻断链的降解反应的特异性,可以在同一溶液中正交延迟两种不同的脉冲反应。最后,我们在此展示了这种延迟脉冲 SDR 的两种可能应用:DNA 纳米结构的时间编程脉冲装饰以及基于 DNA 的图案的顺序出现和自擦除形成。
芯片选择变为低电平后,地址信息将通过引脚 13 01 “'l0""'l 被输入到芯片中。在第四个时钟脉冲处,将决定是否读取或写入所选的 QQ V” 时间信息。然后,第五个和随后的时钟脉冲将输入或输出时间 I?“ w'DT:'. °' "ff. '”°' .p“": :h°\'“';3'tl'_es¥°:h':“ m:'}n'4u;"§' 数据。在选择性读写模式期间,第十三个和随后的时钟脉冲将被忽略,直到下一个芯片选择 ow' 高低偏移。在连续读写模式期间,时间脉冲输出(7、10、11、12)第 61 个和后续时钟脉冲也被忽略,直到“例如,chipdmect higmow gxcmsiom当§top输入(4)保持打开或连接到逻辑“1”时,连续输出定时脉冲通常为 32 us 宽,并且上电复位可用于每秒、每分钟为外部电路计时,