科钦造船有限公司(“CSL”)寻求符合本意向书要求的公司(“申请人”)的回应,并愿意与 CSL 建立长期合作伙伴关系,以支持 CSL 的数字化计划。申请人应在印度设有运营办事处,并具有设计、采购相关部件和实施数字化用例的经验,这些用例请参见附件 9。CSL 概述 CSL 成立于 1972 年,是印度政府下属的一家在股票市场上市的 Miniratna 公共部门企业。在过去的四十年里,CSL 已经成为印度造船和修船行业的先行者和知名的全球参与者。CSL 建造了印度一些最大的船舶,目前正在为印度海军建造著名的国产航空母舰。多年来,CSL 成功应对了造船市场的变化,从建造散货船发展到建造技术更为先进的船舶,如客船、海上支援船和电力驱动的全自动渡轮。CSL 还出口了 45 多艘船舶,并与多家领先的技术公司合作,从而扩大了 CSL 品牌在国际市场上的影响力。CSL 还承担各种类型船舶的定期维护、维修和延长使用寿命以及石油和天然气勘探行业船舶升级等服务。CSL 有能力为所有类型的船舶进行复杂而精密的维修,包括石油钻井平台、海军/海岸警卫队船只、近海船只、挖泥船、渔船、客船、港口船只和其他商船。CSL 是唯一一家对航空母舰 INS Viraat 和 INS Vikramaditya 进行干船坞维修的印度船厂。CSL 已经开始了数字化之旅,并正在对其核心系统进行改造。我们计划在项目管理、运营和制造领域采取多项数字化举措,以提高效率和增强能力。
科钦造船有限公司(“CSL”)寻求符合本意向书要求的公司(“申请人”)的回应,并愿意与 CSL 建立长期合作伙伴关系,以支持 CSL 的数字化计划。申请人应在印度设有运营办事处,并具有设计、采购相关部件和实施数字化用例的经验,这些用例请参见附件 9。CSL 概述 CSL 成立于 1972 年,是印度政府下属的一家在股票市场上市的 Miniratna 公共部门企业。在过去的四十年里,CSL 已经成为印度造船和修船行业的先行者和知名的全球参与者。CSL 建造了印度一些最大的船舶,目前正在为印度海军建造著名的国产航空母舰。多年来,CSL 成功应对了造船市场的变化,从建造散货船发展到建造技术更为先进的船舶,如客船、海上支援船和电力驱动的全自动渡轮。CSL 还出口了 45 多艘船舶,并与多家领先的技术公司合作,从而扩大了 CSL 品牌在国际市场上的影响力。CSL 还承担各种类型船舶的定期维护、维修和延长使用寿命以及石油和天然气勘探行业船舶升级等服务。CSL 有能力为所有类型的船舶进行复杂而精密的维修,包括石油钻井平台、海军/海岸警卫队船只、近海船只、挖泥船、渔船、客船、港口船只和其他商船。CSL 是唯一一家对航空母舰 INS Viraat 和 INS Vikramaditya 进行干船坞维修的印度船厂。CSL 已经开始了数字化之旅,并正在对其核心系统进行改造。我们计划在项目管理、运营和制造领域采取多项数字化举措,以提高效率和增强能力。
科钦造船有限公司 (“CSL”) 寻求符合本意向书要求的公司 (“申请人”) 的回应,并愿意与 CSL 建立长期合作伙伴关系,以支持 CSL 的数字化计划。申请人应在印度设有运营办事处,并具有设计、采购相关组件和实施数字化用例的经验,适用于附件 9 中列出的一个或多个用例。CSL 概述 CSL 成立于 1972 年,是印度政府在股票市场上市的 Miniratna 公共部门企业。在过去的四十年里,CSL 已成为印度造船和修船行业的先驱,也是公认的全球参与者。CSL 建造了印度一些最大的船舶,目前正在为印度海军建造著名的国产航空母舰。多年来,CSL 成功应对了造船市场的变化,从建造散货船发展到建造技术更为先进的船舶,如客船、海上支援船和电力驱动的全自动渡轮。CSL 还出口了 45 多艘船舶,并与多家领先的技术公司合作,从而扩大了 CSL 品牌在国际市场上的影响力。CSL 还承担各种类型船舶的定期维护、维修和寿命延长以及石油和天然气勘探行业船舶升级等服务。CSL 有能力为所有类型的船舶进行复杂而精密的维修,包括石油钻井平台、海军/海岸警卫队船只、近海船只、挖泥船、渔船、客船、港口船只和其他商船。CSL 是唯一一家承接过 INS Viraat 和 INS Vikramaditya 航空母舰干船坞维修的印度船厂。CSL 已踏上数字化之旅,并正在改造其核心系统。计划在项目管理、运营和制造领域实施多项数字化举措,以提高效率和增强能力。
科钦造船有限公司(“CSL”)寻求符合本意向书要求的公司(“申请人”)的回应,并愿意与 CSL 建立长期合作伙伴关系,以支持 CSL 的数字化计划。申请人应在印度设有运营办事处,并具有设计、采购相关部件和实施数字化用例的经验,这些用例请参见附件 9。CSL 概述 CSL 成立于 1972 年,是印度政府下属的一家在股票市场上市的 Miniratna 公共部门企业。在过去的四十年里,CSL 已经成为印度造船和修船行业的先行者和知名的全球参与者。CSL 建造了印度一些最大的船舶,目前正在为印度海军建造著名的国产航空母舰。多年来,CSL 成功应对了造船市场的变化,从建造散货船发展到建造技术更为先进的船舶,如客船、海上支援船和电力驱动的全自动渡轮。CSL 还出口了 45 多艘船舶,并与多家领先的技术公司合作,从而扩大了 CSL 品牌在国际市场上的影响力。CSL 还承担各种类型船舶的定期维护、维修和延长使用寿命以及石油和天然气勘探行业船舶升级等服务。CSL 有能力为所有类型的船舶进行复杂而精密的维修,包括石油钻井平台、海军/海岸警卫队船只、近海船只、挖泥船、渔船、客船、港口船只和其他商船。CSL 是唯一一家对航空母舰 INS Viraat 和 INS Vikramaditya 进行干船坞维修的印度船厂。CSL 已经开始了数字化之旅,并正在对其核心系统进行改造。我们计划在项目管理、运营和制造领域采取多项数字化举措,以提高效率和增强能力。
6.1。工资确定是确定根据41 U.S.C.6703或6707(c)适用于一类或多个分包商服务人员的特定地点的最低工资或附带福利。6.2。美国是50个州,哥伦比亚特区,波多黎各,北部玛丽安娜群岛,美国萨摩亚,关岛,美国维尔京群岛,约翰斯顿岛,威克岛和外大陆架,如《外大陆架外货架法》(43 U.S.C.1331,ETSEQ。),但不包括受美国管辖权或外国任何美国基地或财产约束的任何其他地方(29 CFR 4.112)。6.3。服务分包合同超过$ 2,500,应包含有关最低工资和附加福金,安全和卫生工作条件的强制性规定,向分包商的最低允许赔偿的通知以及同等的联邦雇员分类和工资率。根据41 U.S.C.6707(D),服务分包合同不得超过5年。6.4。分包商以超过$ 2,500的价格进行服务分包商,没有任何前身分包商的集体谈判协议适用其雇员,至少劳动部发现的工资和附带福利以在当地占上风,或者在没有工资确定的情况下,在公平的工党劳动标准中所设定的最小工资。6.5。此类分包通常以小时(人工加材料和零件)为基础开具发票。任何分包合同主要用于此类工作,均受服务合同劳动标准法规的约束。重制造不包括维修受损或破损的设备,不需要完全拆除,大修和重建,或定期维护,保存,保存,护理,调整,保养,保养或维修此类设备,以使其保持可用,可用,可提供的工作顺序。
丰田高地混合动力电池的平均寿命在8-10年或约100,000至150,000英里之间,但根据情况,它可以持续到200,000至300,000英里。大多数混合动力电池通常持续80,000至100,000英里。丰田提供10年或150,000英里的保修。取代电池的成本范围从2,000美元到4,000美元不等,具体取决于诸如模型年度和经销商政策等因素。影响电池寿命的因素包括气候,驾驶习惯,维护和充电周期。 驾驶员应监视燃油效率和性能降低的迹象,因为这些驱动器可能表明需要更换。 定期检查和维护可以帮助延长电池的寿命并提高整体车辆性能。 总而言之,尽管平均寿命约为8 - 10年,但了解如何通过仔细的驾驶条件和定期维护来最大化电池寿命可以带来重大的好处。 以较慢的速度驾驶可以缩短电池寿命,同时持续驾驶快速驾驶会更快地将其磨损。 极端温度也可以将电池寿命降低到低于冻结的情况下最多20%。 在温和气候的区域中,电池往往持续更长的时间。 定期检查和维护电池端子和连接以防止腐蚀并确保正常运行至关重要。 丰田建议在所有者手册中遵循其指南,以进行最佳的混合系统维护。 您充电和排放电池的次数也会影响其寿命。 谨慎的驾驶习惯也起着重要作用。影响电池寿命的因素包括气候,驾驶习惯,维护和充电周期。驾驶员应监视燃油效率和性能降低的迹象,因为这些驱动器可能表明需要更换。定期检查和维护可以帮助延长电池的寿命并提高整体车辆性能。总而言之,尽管平均寿命约为8 - 10年,但了解如何通过仔细的驾驶条件和定期维护来最大化电池寿命可以带来重大的好处。以较慢的速度驾驶可以缩短电池寿命,同时持续驾驶快速驾驶会更快地将其磨损。极端温度也可以将电池寿命降低到低于冻结的情况下最多20%。在温和气候的区域中,电池往往持续更长的时间。定期检查和维护电池端子和连接以防止腐蚀并确保正常运行至关重要。丰田建议在所有者手册中遵循其指南,以进行最佳的混合系统维护。您充电和排放电池的次数也会影响其寿命。谨慎的驾驶习惯也起着重要作用。锂离子电池(通常用于混合动力),在一定数量的周期后显示出磨损。重负荷或在山上开车会给混合动力电池带来更大的压力,尤其是当它主要用于城市驾驶时。通过了解这些因素,驾驶员可以通过行为调整,预防性维护和对环境条件的认识来优化其高地混合动车的电池寿命。标志表明是时候替换您的Highlander混合动力电池了,包括减小驾驶范围,仪表板警告灯,缓慢加速和不寻常的电池行为(例如过热)。如果您注意到这些标志中的任何一个,则可能有必要更仔细地检查电池。用IB(增加爆发)方法重写的原始文本:高地所有者,当心不寻常的电池行为!过热表明正在进行的潜在失败。电池应在标准温度范围内运行;任何过多的东西都可能表明故障或迫在眉睫的故障。国家可再生能源实验室强调监测这些标志以防止进一步损坏并确保安全。通过关注这些警告标志,驾驶员可以就及时更换其Highlander混合动力电池做出明智的决定。为了延长您的高地混合动力电池的寿命,请遵循以下简单但至关重要的做法:定期维护是关键!经过认证的技术人员的例行检查评估电池状况,检查连接,清洁终端并确保冷却系统正常运行。平滑而逐渐的驾驶可减少电池的负载。国家可再生能源实验室(NREL,2020)的一项研究表明,定期维护可以提高电池寿命高达30%。避免进行侵略性加速和频繁制动,这会使电池电量过滤。监控电池健康有助于及时干预。使用板载诊断工具或应用程序定期检查电池的充电状态和整体健康状况。美国环境保护局(EPA)建议将电池电量保持在20%至80%之间,以防止深层排放,这可以缩短电池寿命。优化充电条件也至关重要。充电时避免高温,因为热和冷会损坏电池电池。要保留电池寿命,请在适度的环境中充电。发表在《电源杂志》上的一项研究(Smith等,2022)指出,在最佳温度下充电电池的寿命增加了约25%。遵循这些做法可以显着提高您的Highlander混合动力电池的寿命,从而确保随着时间的推移可靠的性能。更换高地混合动力电池可能会很昂贵!平均成本从2,500美元到4,500美元不等。此价格取决于电池类型,人工成本和位置等因素。根据AAA的说法,由于其先进的技术,混合动力电池很昂贵。更换成本包括电池和人工。人工成本取决于经销商费率或独立的机械费用。有些地方以较低的价格提供翻新的电池。美国能源部强调,电池技术的进步提高了能量密度并降低成本。效率较高的电池可能会导致降低终身成本,而反对性能和寿命。几个因素影响了这些成本,包括电池的类型,人工和位置。混合动力车所有者在混合动力车主中取代电池的重要性面临着替换电池的至关重要的需求,这受到年龄,驾驶习惯和环境条件等因素的影响。频繁的深层排放和极端天气会显着影响电池寿命。研究表明,将近30%的混合动力车主需要在所有权期间更换电池,平均更换发生在100,000英里的大关附近。更换混合动力电池会影响车辆性能和转售价值。新电池恢复了效率和范围,使其吸引了潜在的买家。在环境上,用更新版本代替较旧的电池可以通过利用更有效的技术来减少整体排放。要解决高替换成本,消费者可以研究电池保修选项并考虑电池回收计划。常规维护和环保驾驶习惯可以延长电池寿命。利用预测维护应用程序还可以帮助监控电池健康并优化性能。Toyota Highlander Hybrid等混合动力汽车的保修覆盖范围通常持续5 - 10年或最高150,000英里,其中一些州提供了延长的保修。了解这种保修对于寻求全面保护其混合动力组件的消费者至关重要。国家公路交通安全管理局强调,此类保证提供了更广泛的保护,减轻了对与混合技术有关的昂贵维修的担忧。要保持高地混合动力电池健康,请遵循以下关键维护实践:定期检查电池连接,保持最佳的充电水平,监控温度,确保适当的驾驶习惯,安排专业的检查并定期使用车辆。有效的电池维护涉及一种整体方法,每种练习都可以最大程度地提高电池寿命,同时最大程度地减少意外成本。定期检查电池连接:通过清洁端子来确保清洁和安全的连接,以提高电导率和整体系统效率。保持最佳充电水平:保持电池在20%至80%之间,以提高寿命,进行定期旅行以保持电池充电。监视温度极端:通过避免高温和极度冷的防护电池性能,因为升高的温度可以缩短电池寿命高达30%。确保适当的驾驶习惯:通过平滑的加速和逐渐停止减少电池的压力,而积极的驾驶可以增加电池的工作量。安排专业检查:通过安排例行检查来识别隐藏问题并确保所有组件正常运行,利用电池护理中的专家知识。定期使用车辆:通过定期使用车辆来防止电池耗尽,每周至少驾驶一次以保持电池状况良好。
项目摘要:费城公共卫生局 (PDPH) 疾病控制司 (DDC) 致力于预防、控制和报告具有传染性和/或影响公众健康的疾病和状况。DDC 帮助为突发公共卫生事件做好准备,并教育社区如何保持安全和健康。作为 PDPH DDC 的一部分,费城免疫计划负责监督联邦资助疫苗的购买和分发给当地医疗保健提供者。作为美国疾病控制和预防中心 (CDC) 资助的 64 个项目领域之一,费城免疫计划的使命是预防疫苗可预防疾病并提高费城婴儿、儿童、青少年和成人的免疫覆盖率。根据这一使命,费城免疫计划运行 3 个联邦疫苗计划:儿童疫苗 (VFC) 计划、高风险成人疫苗 (VFAAR) 计划和 COVID-19 疫苗提供者计划。费城免疫计划致力于确保医疗服务提供者能够获得联邦疫苗、优质的患者教育材料以及有关正确疫苗接种、储存和处理的培训。*职位描述:平面和网页设计师将负责开发和维护免疫计划的数字和印刷通信的外观,确保所有通信在视觉和音调上统一,符合费城的高可访问性标准,并且是专业制作的。平面和网页设计师将负责设计和创建免疫计划其他成员可用于与医疗服务提供者和公众沟通的通信材料和模板。这些包括但不限于电子邮件通讯、疫苗接种促销、教育材料和外展活动。平面和网页设计师将定期维护免疫计划的网站并仔细审查其内容,使所有信息保持最新,并确保网站易于使用。此外,该职位将负责网站的管理,并将维护网站有序的后端,确保
bill.morgante@maryland.gov 5. 公共工程委员会湿地许可证建议:公共工程委员会湿地管理员建议委员会为马里兰州可通航水域的填海和疏浚项目颁发许可证。MDE:马里兰州环境部同意此项建议。授权:马里兰州注释法典第 16-202 节环境条款:“委员会应决定颁发 [潮汐湿地] 许可证是否符合该州的最佳利益,同时考虑申请所代表的不同生态、经济、发展、娱乐和美学价值。”另请参阅 COMAR 23.02.04。安妮阿伦德尔县 22-0171 ROBERT MARTENSSON – 通过机械疏浚某个区域、将疏浚物运送到处置场以及为期六年的定期维护疏浚来改善通航通道。安纳波利斯,钓鱼溪 特殊条件:一年中的时间限制。拆除现有平台、在疏浚区域打桩、疏浚材料运输和处置、疏浚后水深测量和维护性疏浚的要求。22-0850 GERARD CHAPPELL – 通过拆除防波堤、用沙子填充海滩和建造石防波堤来养护海滩并控制海岸线侵蚀。塞弗纳公园,卡特泰尔溪 特殊条件:一年中的时间限制。建造海滩养护区的要求。下载联邦批准的说明。22-1064 WILLIAM SYKORA、JOHN SURRICK III 和 NEIL DIDRIKSEN – 通过建造活海岸线、用沙子填充和平整以及种植沼泽植被来减少海岸线侵蚀。安纳波利斯,布罗德溪 特殊条件:沼泽建立区域的要求、沼泽维护计划的签署和接受、年度照片提交、县审查和授权在平均高水位以上工作以及在入侵的芦苇区域种植本地植被。 湿地创建:5,044 平方英尺
应用和Web开发该领域通过为学术和行政部门开发应用程序,并为学院开发和维护一个符合ADA的网站,从而为社区提供支持。课堂实验室和智能课堂信息技术技术支持课堂实验室和智能课堂中的所有技术,以促进学生和教职员工的卓越教学。这些教室配备了技术和软件,除了支持教师请求以推进其学习环境外,还可以定期维护这些教室。协作技术(CT)CT组支持该学院的教职员工电子邮件Microsoft Exchange。通过与Microsoft建立广泛的合作伙伴关系,学生可以使用Office365访问电子邮件。登录到计算机的帐户也由CT团队管理。电信也是CT的一部分,管理校园广泛的电话系统。HelpDesk HelpDesk充当所有技术支持问题的中心联系点,包括硬件和软件问题,咨询,安装,网络和故障排除。HelpDesk是CSI的第一道防线,以解决技术问题,问题和问题。媒体服务媒体服务提供广泛的服务,包括智能课堂和传统的视听支持,视频会议,数字视频和静止图像制作。网络网络服务小组为大学社区提供了一个可靠,安全和高效的网络。我们使用有线和无线连接的广泛计算设备为15,000多名用户提供网络连接。安全信息技术服务确保严格的安全协议并符合CUNY指南。必须进行安全策略,以维护受保护的网络并防止对与CSI网络连接的软件和硬件的恶意攻击。智能环境大学社区可以利用各种服务来利用云产品和创新技术,例如虚拟现实,Microsoft应用程序,虚拟实验室,仅举几例。培训和操作学院社区通过包括虚拟和面对面培训在内的各种培训方法接受了支持技术的培训。
3.2.1.22 核生存能力。 ...................................................................................................................... 81 3.2.1.23 处理器标准。 ................................................................................................................ 82 3.2.1.24 损坏保护/过载保护。 ...................................................................................................... 83 3.2.1.25 平视显示器(HUD)-特定要求。 ...................................................................................... 84 3.2.1.26 头盔显示器(HMD)特定要求。 ...................................................................................... 99 3.2.2 系统接口。 ............................................................................................................. 107 3.2.2.1 电气接口。 ............................................................................................................. 108 3.2.2.2 机械接口。 ............................................................................................................. 113 3.2.2.3 冷却接口。 ............................................................................................................. 114 3.2.2.4 显示记录接口。 ........................................................................................... 115 3.2.3 可靠性. ..............................................................................................................116 3.2.4 可维护性. ..............................................................................................................117 3.2.4.1 维护概念. ..............................................................................................................118 3.2.4.2 定期维护. ..............................................................................................................119 3.2.4.3 自检. ......................................................................................................................120 3.2.4.4 内置测试(BIT) ......................................................................................................121 3.2.4.5 可测试性. ......................................................................................................................122 3.2.4.6 故障报告. ................................................................................................................123 3.2.5 重量. ......................................................................................................................124 3.2.6 体积. ................................................................................................................125 3.3 设计和施工 ................................................................................................................126 3.3.1 环境完整性. ..............................................................................................................126 3.3.1.1 爆炸减压. ......................................................................................................126................................................................ 129 3.3.2 安全性. ....................................................................................................................130 3.3.2.1 逃生间隙. ....................................................................................................................131 3.3.2.2 噪声产生. ....................................................................................................................132 3.3.2.3 X 射线发射. ....................................................................................................................133 3.3.2.4 碰撞安全性. ....................................................................................................................133 3.3.2.5 结合玻璃鸟撞. ....................................................................................................................134 3.3.3 人体工程学. ....................................................................................................................135 3.3.3.1 手柄和抓握区域. ....................................................................................................135 3.3.3.2 键盘要求. ....................................................................................................................136 4. 验证 .............................................................................................................................6 4.1 控制和显示部分的验证。 ................................................................8 4.1.1 主飞行显示器的验证。 ......................................................................................11 4.1.2 情况显示的验证。 ..............................................................................................13 4.1.3 HUD/HMD 的验证。 .............................................................................................14 4.1.4 车辆管理子系统(VMS)显示的验证。 .............................................................16 4.1.5 警告、注意和咨询(WCA)显示的验证。 .............................................................17 4.1.6 航空电子子系统控制和数据输入的验证。 .............................................................18 4.1.7 视频记录的验证。 .............................................................................................19 4.2 从属元素的特性验证。 .............................................................................................20 4.2.1 性能环境的验证。 .............................................................................................20 4.2.1.1 照明颜色的验证。 .............................................................................................21 4.2.1.2 符号的验证。 ........................................................................................... 24 4.2.1.3 显示模式验证. ........................................................................................... 31 4.2.1.4 显示屏分辨率验证。 ................................................................................................................ 33 4.2.1.5 图像分辨率验证。 .......................................................................................................... 36 4.2.1.6 显示屏清晰度验证。 ...................................................................................................... 38 4.2.1.7 显示屏尺寸验证。 ...................................................................................................... 62 4.2.1.8 显示屏色彩验证。 ...................................................................................................... 64