Niklas F.C. Hummel,1,2,3,4 Kasey Markel,1,2,3 Jordan Stefani,5 Max V. Staller,5,6,7 *和Patrick M. Shih 1,2,2,2,3,3,8,9,9,9, * 1工厂和微生物系,加利福尼亚大学,伯克利大学,CA 94720,CA 94720,USAD CACTUTTE 94608,美国3美国3环境基因组学和系统生物学部,劳伦斯·伯克利国家实验室,伯克利,CA 94720,美国4美国4号生物学系,Technische Universit,Darmstadt,64287 Darmstadt,DARMSTADT,DARMSTADT,DEMANY DEMANY,DEMANY 5 MATILIA of CALICALIA of CALICATION of CALICATIA美国伯克利,加利福尼亚州94720,美国7 Chan Zuckerberg Biohub-San Francisco,旧金山,CA 9415,美国8 Innovative Genomics Institute,加利福尼亚大学,伯克利分校,CA 94720,美国94720,美国9铅联系 *通讯 ),pmshih@berkeley.edu(p.m.s.) https://doi.org/10.1016/j.cels.2024.05.007Niklas F.C.Hummel,1,2,3,4 Kasey Markel,1,2,3 Jordan Stefani,5 Max V. Staller,5,6,7 *和Patrick M. Shih 1,2,2,2,3,3,8,9,9,9, * 1工厂和微生物系,加利福尼亚大学,伯克利大学,CA 94720,CA 94720,USAD CACTUTTE 94608,美国3美国3环境基因组学和系统生物学部,劳伦斯·伯克利国家实验室,伯克利,CA 94720,美国4美国4号生物学系,Technische Universit,Darmstadt,64287 Darmstadt,DARMSTADT,DARMSTADT,DEMANY DEMANY,DEMANY 5 MATILIA of CALICALIA of CALICATION of CALICATIA美国伯克利,加利福尼亚州94720,美国7 Chan Zuckerberg Biohub-San Francisco,旧金山,CA 9415,美国8 Innovative Genomics Institute,加利福尼亚大学,伯克利分校,CA 94720,美国94720,美国9铅联系 *通讯),pmshih@berkeley.edu(p.m.s.)https://doi.org/10.1016/j.cels.2024.05.007
摘要 微生物(包括潜在病原体)可在水环境中的塑料表面定殖。本研究调查了大肠杆菌(E. coli)作为水环境中粪便病原体的替代物对塑料颗粒的定殖情况。将来自污染海滩的塑料颗粒放置在添加了大肠杆菌的海水水族箱中。多种细菌(主要来自变形菌门)在 24 小时内迅速在颗粒上定殖,其中值得注意的是以塑料或碳氢化合物降解而闻名的菌种。在 26 天内,塑料表面形成了生物膜,细菌种群达到 6.8 10 5 个 16S rRNA 基因拷贝数 (gc) mm 2 。使用培养方法在颗粒中检测到大肠杆菌长达 7 天,无论来源或环境因素如何,其附着密度均有所不同。该研究强调塑料生物膜是大肠杆菌的储存器,有助于粪便细菌在水生系统中生存和持续存在。这些发现加深了我们对海洋环境中塑料污染相关风险的理解,深入了解了粪便指标的行为及其对水质评估的影响,同时提供了有关塑料相关微生物群落中潜在病原体传播的宝贵信息。
微塑料(MPS)是一种新兴的污染物,具有许多未知的健康和环境后果。MPS进入环境后,它们会暴露于自然风化中,这可以改变其润湿性并增加其裸露的表面积。表面积的增加为微生物提供了底物,进而改变了MPS的表面特征。此外,在沉积之前,可以轻松地将MPS雾化和长距离进行。当MP在大气中,它们不仅与其他污染物相互作用,而且还可以充当冰核颗粒(INP),为云形成和影响降水提供了基础。实际上,最近的一项研究发现云中存在的MP。To evaluate the hypothesis that MPs may act as INPs, polystyrene microplastics varying in size (1 µ m to 100 µ m) and surface roughness were subjected to a freezing droplet assay from 0 ◦ C to approximately -14 ◦ C. A subset of these MPs were then added to the culture of a known bacterial ice nucleator, Pseudomonas syringae , which has been shown to play a role in水周期。这些用丁香假单胞菌培养的MP也暴露于相同的冷冻液滴测定中,并将结果与单独的MPS进行比较。我们的结果表明,MPS上生物膜的大小,粗糙度和存在会影响其作为INP的能力。这些结果对在整个环境中建模MPS及其对云和气候的影响有影响。
粪便微生物移植(FMT)为治疗溃疡性结肠炎(UC)提供了希望,尽管治疗失败的机制尚不清楚。这项研究利用了纵向收集的结肠活检(n = 38)和粪便样本(n = 179),来自19名患有轻度至中度UC的成年人接受串行FMT,其中抗菌预处理和递送模式(capsules versus versus versus versus versus versus versus versus versus versus versus versus versus sorge均可评估临床响应(从临床上降低)。结肠活检进行了双RNA-Seq;粪便样品接受了平行的16S rRNA和shot弹枪元基因组测序以及未靶向的代谢组分分析。与反应性(R)患者相比,无反应性(NR)患者的结肠粘膜(NR)患者的结肠粘膜(NR)患者的结肠粘膜增加了细菌的负担,包括细菌的负担增加,这些细菌表达了更多的抗菌耐药性基因。NR患者还表现出先天免疫抗菌反应基因的粘膜表达。FMT,NR和R粪便微生物组和代谢组表现出明显的差异。NR代谢组具有升高的免疫刺激化合物,包括鞘磷脂,溶血磷脂和牛磺酸。nr粪便微生物组富含菌丝脆弱的菌丝和细菌剂盐菌株,这些菌株编码了能够生产牛磺酸的基因。这些发现表明,有效的粘膜微生物清除率和重新引入细菌,使腔内代谢与FMT成功相关,以及持续的粘膜粘膜和粪便抗菌细菌菌种物种可能会导致FMT失败。
摘要:布拉氏酵母菌 (Sb) 是一种新兴的益生菌底盘,用于将生物分子递送到哺乳动物肠道,作为唯一的真核益生菌,具有独特的优势。然而,精确控制 Sb 中的基因表达和肠道停留时间仍然具有挑战性。为了解决这个问题,我们开发了五个配体响应基因表达系统并修复了 Sb 中的半乳糖代谢,从而实现了该菌株中的可诱导基因表达。通过设计这些系统,我们可以构建 AND 逻辑门,控制蛋白质的表面展示,并启动小鼠肠道对饮食糖的反应,从而产生蛋白质。此外,修复半乳糖代谢扩大了 Sb 在肠道内的栖息地,并实现了对肠道停留时间的半乳糖响应控制。这项工作通过控制其体内基因表达水平和胃肠道内的定位,为 Sb 精确给药开辟了新途径。关键词:合成生物学、酵母、微生物组 ■ 简介
摘要:数十年来破坏自然资源的工业活动一直是环境破坏中最重要的因素之一。由于工业化,环境污染物成为生物圈最大的威胁之一。重金属,其中一种是这些环境污染物之一,已通过形成金属在水和土壤中的金属积聚而成为生物体的重大健康威胁。除了现有的研究人员外,大多数研究人员都认为,替代生物学过程非常需要用于控制重金属污染。生物修复是去除各种有毒污染物的过程,例如来自环境的重金属,尤其是在真菌和细菌微生物的帮助下,有时是植物和earth。在生物修复过程中使用细菌很普遍。在这项研究中,研究了从根和兰花植物的根部土壤和兰花植物中分离出的芽孢杆菌的金属耐受性和植物生长的特性。除了测试了两种细菌耐受铜,铅,铁,银和锌的能力,并确定其吲哚乙酸的产生(IAA),铁载体的产生,磷酸盐溶解度和氨基丙烷1-氯丙烷-1-羧酸盐 - 辅助酸酯 - 脱氨基氨基氨基酶(ACC-脱氨酸酶)的活性。这两个分离株对不同的pH水平,温度范围和金属浓度表现出很高的耐受性。结果表明,金属芽孢杆菌和苏云金分离株可用作金属污染土壤中的生物固定剂,并且由于其植物生长促进特性而被用作生物肥料。
添加剂制造的医疗应用近年来由于高级医学成像和设计软件以及广泛的材料的可用性而显着增长。添加性生产的医疗植入物的范围正在迅速增长,外科医生需要通过最先进的技术来保持最新状态。本文回顾了与医学植入物有关的几篇文章,以帮助外科医生和研究人员了解该领域的最新发展。添加性制造的医疗植入物分为五类:骨科植入物,牙齿植入物,颅骨成形术植入物,用于组织工程的支架植入物和其他医疗植入物,包括胸壁重建植入物,抗移民增强的气管架和肥胖的乳脂状基本。在研究中突出显示了添加剂制造过程和每种植入物的制造材料。已经观察到钛合金是一种适合无胶结性关节置换术的材料。孔隙率支持骨向内生长,从而显着减少应力屏蔽。添加剂制造在医疗植入物制造中具有非常有吸引力的未来,因为它有能力生产复杂和定制的植入物。AM为研究人员提供了自由,以探索医疗植入物的复杂设计,以改善骨骼再生并改善骨整合。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年4月5日发布。 https://doi.org/10.1101/2024.04.05.588293 doi:Biorxiv Preprint
摘要。细菌感染是一个全球问题。革兰氏阴性细菌中最常见的感染病原体是肠杆菌科家族的代表。果胶是属于肠杆菌科家族的革兰氏阴性植物病毒细菌。该研究的目的是开发用于鉴定植物性细菌的方法。以开发识别算法的测试成分的能力,我们使用了参考文献“ Bergey的古细菌和细菌系统手册”中介绍的数据。用于选择研究参数和细菌学测试的模型微生物是从俄罗斯全俄集中的微生物和果皮杆菌333收集的fsbeem博物馆fsbei Museum of fsbei ne ulylyananovsk sau ulylyananoversk sau ullyananovorum b-3455的参考菌株B-3455。stolypin。从50个植物检测和环境物体的样品中,将5种菌株归类为雌雄杆菌属杆菌属。carotovorum。
1妇产科和妇科系妇产科,维也纳医科大学,沃林格·盖尔特尔(Waehringer Guertel)18-20,奥地利1090年维也纳; fanny.mikula@meduniwien.ac.at(F.M.); Alex.farr@meduniwien.ac.at(A.F.); harald.leitich@meduniwien.ac.at(H.L.); sonja.granser@meduniwien.ac.at(S.G.)2感染控制与医院流行病学系,维也纳医科大学,奥地利维也纳1090; julia.ebner@meduniwien.ac.at 3新生儿学,小儿重症监护和神经科医生,儿科和青少年医学系,维也纳医科大学综合儿科中心,奥地利1090年,维也纳,奥地利维也纳; agnes.grill@meduniwien.ac.at *通信:philipp.foessleitner@meduniwien.ac.at;电话。: +43-1-40400-28220;传真: +43-1-40400-28620