KPLO 航天器将携带六个科学有效载荷,包括月球地形成像仪 (LUTI),用于绘制月球表面地图、寻找未来着陆点和确定月球表面的感兴趣位置;以及广角偏振相机 (PolCam),它将在三个光谱带对整个月球表面进行偏振成像测量。它将携带 KPLO 伽马射线光谱仪 (KGRS),用于绘制月球表面上和地下各种元素和辐射的分布图;KPLO 磁力仪 (KMAG),它将描述月球磁异常并研究月球地壳磁性的起源;以及抗干扰网络实验有效载荷 (DTN)。此外,KPLO 还将携带 NASA 有效载荷 Shadowcam,用于探索极地陨石坑中的永久阴影区域。
库蚊是多种人类和动物疾病的全球传播媒介,包括西尼罗河病毒、淋巴丝虫病和禽疟疾,对公共卫生、牲畜、伴侣动物和濒危鸟类构成持续威胁。虽然杀虫剂抗药性的不断增加威胁到库蚊的控制,但 CRISPR 基因组编辑工具的进步促进了替代遗传策略(如基因驱动系统)的发展,以对抗疾病媒介。然而,尽管基因驱动技术在其他蚊子中发展迅速,但在库蚊方面却进展缓慢。在这里,我们开发了库蚊特异性 Cas9/gRNA 表达工具包,并使用基于定点同源性的转基因来生成和验证库蚊 Cas9 表达系。我们表明,gRNA 支架变体可提高库蚊和果蝇的转基因效率,并提高果蝇的基因驱动性能。这些发现支持未来控制库蚊的技术开发,并为改进其他物种的这些工具提供宝贵的见解。
摘要 - 生物材料过程的有效和强大的调节对于设计可靠的合成生物设备在不确定且不断变化的生物学环境中起作用至关重要。比例综合衍生(PID)控制器无疑是在现代技术应用中实施反馈控制的最常见方法。在这里,我们引入了一个高度可调的PID生物控制器,其设定点加权和过滤衍生作用作为具有质量作用动力学的化学反应网络。为了证明其有效性,我们将PID方案应用于两个大量激活物种的简单生物学过程,其中一种被认为是感兴趣的输出。为了突出显示其性能优势,我们将其与确定性和随机设置中的数值模拟进行比较。
l -1MTrp,定量和纵向可视化全身 IDO1 动态。具体来说,我们首先评估了具有不同 IDO1 表达模式的对侧人类肿瘤的小鼠中的 11 C- l -1MTrp。然后,我们应用 11 C- l -1MTrp 纵向监测用 1-甲基- l -色氨酸加化疗药物或针对程序性细胞死亡 1 和细胞毒性 T 淋巴细胞相关蛋白 4 的抗体治疗的免疫功能正常的黑色素瘤小鼠的全身 IDO1 变化。结果 11 C- l -1MTrp 正电子发射断层扫描 (PET) 成像准确描绘了异种移植小鼠模型中的 IDO1 表达。此外,我们能够可视化肠系膜淋巴结 (MLN) 中的动态 IDO1 调节,这是肿瘤外 IDO1 靶点,其中 11 C- l -1MTrp 的摄取百分比准确地注释了临床前模型中多种联合免疫疗法的治疗效果。值得注意的是,MLN 中的 11 C- l -1MTrp 信号强度与治疗肿瘤的特定生长率呈负相关,这表明 MLN 中的 IDO1 表达可以作为癌症免疫设定点的新生物标志物。结论 IDO1 与 11 C- l -1MTrp 的 PET 成像是一种评估多种组合免疫疗法治疗效果的可靠方法,可提高我们对 IDO1 方案的优点和挑战的理解。正在进一步验证该动物数据在人类中的应用。我们设想,我们的研究结果将为在组合癌症免疫治疗中无创地可视化每个患者的个体反应,并制定最佳的个性化组合策略提供一个潜在的精准医疗范例。
操纵基因活性和控制转基因表达的能力对于研究基因功能至关重要。虽然对于秀丽隐杆线虫来说,有几种用于修改基因或分别控制表达的遗传工具,但是没有遗传方法可以产生既能破坏基因功能又能为表达被破坏基因的细胞提供遗传途径的突变。为了实现这一点,我们开发了一种基于 cGAL(一种用于秀丽隐杆线虫的 GAL4-UAS 二分表达系统)的多功能基因陷阱策略。我们设计了一个 cGAL 基因陷阱盒并使用 CRISPR/Cas9 将其插入目标基因中,从而创建一个双顺反子操纵子,该操纵子可同时在表达目标基因的细胞中表达截短的内源蛋白和 cGAL 驱动基因。我们证明我们的 cGAL 基因陷阱策略可以稳健地产生功能丧失的等位基因。将 cGAL 基因陷阱系与不同的 UAS 效应菌株相结合,使我们能够挽救功能丧失的表型,观察基因表达模式,并在时空上操纵细胞活动。我们表明,通过显微注射或基因杂交的重组酶介导的盒式交换 (RMCE),可以进一步在体内设计 cGAL 基因陷阱系,以轻松地将 cGAL 与其他二分表达系统的驱动器(包括 QF/QF2、Tet-On/Tet-Off 和 LexA)交换,以生成在同一基因组位置具有不同驱动器的新基因陷阱系。这些驱动器可以与它们相应的效应物结合以进行正交转基因控制。因此,我们基于 cGAL 的基因陷阱是多功能的,代表了秀丽隐杆线虫基因功能分析的强大遗传工具,这最终将为基因组中的基因如何控制生物体的生物学提供新的见解。
根据建设绩效评价指导方针(四本閣第220號(CCP),19.12.13)所制定的建设绩效评价通知书(以下简称“建设绩效评价通知书”)以及根据建设绩效评价指导方针(四本閣第134號(CCP),30.7.19)、建设绩效评价指导方针(京成第4404號,31.3.21)、建设绩效评价指导方针(防禦技術第15542號,10.27)或建设绩效评价指导方针(防禦技術第7160號,3.28.3.31)所制定的建设绩效评价通知书(以下简称“建设绩效评价通知书”)(以下简称“建设绩效评价通知书”)合计得分未满65分的,将被排除在外。
所有操作控制的选择都通过前面板上的按键进行,显示屏会提示用户完成每个步骤。参数设置完成后,只需移除前挡板后面的跳线即可锁定参数。用户可以选择控制模式和参数、显示分辨率(1 或 0.1°)和单位(°F/°C)。操作员还可以利用范围功能,该功能限制了可以选择设定点的范围,或锁定用户无法更改设定点。新的单设定点控制器具有后部终端。CN9000A 型号的可选第二设定点和输出可设置为比例、开关或锁存限制控制,并可设置为跟踪或非跟踪设定点。循环时间、比例带和开关死区均独立于主设定点设置。
15 带 Lambda 控制的 ELEKTRA 调试...................................................................................... 65 15.1 常规 IO 配置............................................................................................................... 65 15.2 CAN 通信............................................................................................................... 66 15.3 功能描述和配置....................................................................................................... 68 15.3.1 ELEKTRA 设定点.................................................................................................... 68 15.3.1.1 内部 Lambda 设定点......................................................................................... 68 15.3.1.2 外部 Lambda 设定点......................................................................................... 68 15.3.1.3 DcDesk2000 上的 Lambda 设定点............................................................. 69 15.3.1.4 DcDesk2000 上的燃气节流阀位置设定点............................................................. 69 15.3.1.5 安全备注......................................................................................................... 69 15.3.2 Lambda 控制参数........................................................................... 70 15.3.3 气体质量.............................................................................................................. 70 15.3.3.1 恒定气体质量............................................................................................... 70 15.3.3.2 可变气体质量............................................................................................... 70 15.3.4 发动机状态............................................................................................................. 71 15.3.5 气体燃料限制......................................................................................................... 73 15.3.5.1 固定启动燃料限制....................................................................................... 73 15.3.5.2 可变启动燃料限制....................................................................................... 73 15.3.5.3 速度相关燃料限制....................................................................................... 74 15.3.6 闭环 Lambda 控制............................................................................................. 74 15.3.7 安全功能............................................................................................................. 75
此外,对于由防卫省订货机构(指订货人所属的防卫省内局、日本防卫大学、防卫医学院、防卫研究机构、联合参谋本部、地勤参谋本部、海上参谋本部、航空参谋本部、情报本部、防卫检查本部、各防卫局、联合参谋本部参谋长、陆上自卫队参谋长、海上自卫队参谋长或航空自卫队参谋长的监督下的陆上自卫队、海上自卫队、航空自卫队的各单位及机关;下同)(包括原防卫设施管理署、原防卫设施管理署)订货的、于2001年12月25日以后完工的工程,应计算工程实绩评估通知书或工程实绩评估通知书上的总评估分数(以下简称“总评估分数”)。