(在非进攻顺序中)和(u J)的正征值的顺序是特征向量的相应正交系统,该问题的解决方案由光谱投影仪P J = J =J∈Ju J j u j u j和Index Set j给出。在统计应用中,X的分布及其协方差结构尚不清楚。相反,人们经常观察样本x 1,。。。,x的n独立副本的x n,现在的问题是要找到p j的估计器。PCA的想法是通过第一次通过经验协方差操作员估算的问题来解决这个问题2.2.1,用于精确定义)。因此,一个关键问题是控制和量化P J和P J之间的距离。在过去的几十年中,围绕这个问题的大量文献已经发展,例如Fan等。 [13],Johnstoneand Paul [24],Horváth和Kokoszka [18],Scholkopf和Smola [45],Jolliffe [23] [23]进行一些概述。 一种研究ˆ P J和P J之间距离的传统方法是控制一项规范,以测量经验协方差算子和人口协方差操作员之间的距离。 一旦建立了这种情况,就可以通过诸如戴维斯 - 卡汉(Davis -Kahan)不平等之类的不平等现象来推导ˆ p j -p j的界限,例如,请参见hsing and eubank [16],Yu等。 [52],以及Cai和Zhang [9],Jirak和Wahl [25],以获取一些最新结果和扩展。 [30]。 但是,如Naumov等人所述。Fan等。[13],Johnstoneand Paul [24],Horváth和Kokoszka [18],Scholkopf和Smola [45],Jolliffe [23] [23]进行一些概述。一种研究ˆ P J和P J之间距离的传统方法是控制一项规范,以测量经验协方差算子和人口协方差操作员之间的距离。一旦建立了这种情况,就可以通过诸如戴维斯 - 卡汉(Davis -Kahan)不平等之类的不平等现象来推导ˆ p j -p j的界限,例如,请参见hsing and eubank [16],Yu等。[52],以及Cai和Zhang [9],Jirak和Wahl [25],以获取一些最新结果和扩展。[30]。但是,如Naumov等人所述。但是,如Naumov等人所述。然而,对于更精确的统计分析,诸如限制定理或引导程序近似之类的爆发结果更为可取。Koltchinskii和Lounici [27],Koltchinskii和Lounici [28,29](及相关)的最新作品在这里特别感兴趣。除其他外,它们提供了预期的平方hilbert – schmidt距离e∥ˆ p j-p j-p j∥22和berry – esseen类型界限的分布分布近似值的精确的,非反对分析的分布分析。在Löfliper[32],Koltchinskii [31],Koltchinskii等人中讨论了一些扩展问题和相关问题。[39],这些结果有一些局限性,并且自举近似可能更可取和灵活。再次,在纯粹的高斯设置中,Naumov等人。[39]成功地展示了一个自举程序,并带有伴随的界限,以减轻某些问题以限制出于推论目的而限制分布。让我们指出,从数学角度来看,Koltchinskii和Lounici [29]和Naumov等人的结果。[39]有些互补。更确切地说,在Naumov等人中,定理2.1的引导程序近似的结合。[39]失败(意味着它仅产生琐碎的性),而Koltchinskii和lounici的定理6中的绑定[29]却没有,反之亦然,请参见Sect。5进行一些示例和进一步的讨论。[7],Yao和Lopes [51],Lopes等。[33],江和拜[20],刘等。[34]。也广泛研究了特征值和相关数量的极限定理和引导近似值的主题,例如,请参见Cai等人。这项工作的目的是为两个分布提供定量界限(例如clts)和bootstrap近似,在矩和光谱衰减方面,情况相对温和。关于后者,我们的结果表现出一种不变性,在很大程度上不受多项式,指数(甚至更快)衰减的影响。
这个数字时代最关键的要求之一是数据安全。现在几天的数据使用次数急剧增加,但是确保数据是非常大的问题,尽管我们有足够的加密算法来确保实时应用程序,但是尚未确定针对现代攻击的安全性水平。基于椭圆曲线的加密术(ECC)是机密性和身份验证的最重要的加密算法,与其他不对称算法(如RSA,Diffie-Hellman等)相比,用较小的长度键提供了较高的安全水平。由于计算复杂性,ECC的实时系统使用量很小。因此,为了增加实时系统的使用情况,我们提出了将ECC与中国剩余定理(CRT)相结合的新方法,以将较大的值降低到较小的值,以便与现有的基于ECC的算法相比,构建ECC点的复杂性可以降低接近40%。此外,它证明了安全级别的提高,可以用作实时通信系统中的基本组件。
摘要背景:自我决定理论 (SDT) 可能为理解药物滥用和治疗结果提供重要见解。然而,迄今为止,将 SDT 应用于药物滥用及其治疗的文献多种多样且难以整合。方法:作者于 2021 年 10 月 26 日搜索了 psycINFO 和 PubMed,以确定将 SDT 应用于药物滥用及其治疗的文章。符合条件的研究以同行评审的文章形式发表在英语中,针对成年人口 (18 岁以上),并明确将 SDT 应用于药物滥用或其治疗的背景。结果被归类为在非治疗或治疗环境中应用 SDT 的研究,并在这些类别中根据重点物质、主要结果、使用的 SDT 组成部分和相关发现进行综合。结果:搜索显示 38 篇在非治疗 (k = 16) 和治疗 (k = 22) 环境中应用 SDT 的文章。因果关系取向和基本心理需求是 SDT 中最常研究的组成部分。在非治疗环境中应用 SDT 的研究更加强调因果关系取向,而治疗研究更经常针对或测量基本心理需求。结论:SDT 结构以理论上一致的方式一致地预测药物滥用和治疗结果,但是,仍存在一些重要差距,并讨论了未来研究的机会。
在本次演讲中,我将解释流形 M 的德拉姆上同调与同一空间上的紧支撑上同调之间的对偶性。这种现象被称为“庞加莱对偶”,它描述了微分拓扑中的一种普遍现象,即流形上封闭的、精确可微形式空间与其紧支撑对应物之间的对偶性。为了定义和证明这种对偶性,我将从向量空间对偶空间的简单定义开始,再到向量空间上正定内积的定义,然后定义流形的概念。我将继续定义可微流形上的微分形式及其相应的空间,这些对于此分析是必要的。然后,我将介绍流形的良好覆盖、有限型流形和方向的概念,这些都是定义和证明庞加莱对偶所必需的概念。我将以 M 可定向且承认有限好覆盖的情况下的庞加莱对偶的证明作为结束,并举例说明。
没有免费的午餐定理用于监督学习的情况,没有学习者可以解决所有问题,或者所有学习者在学习问题上的均匀分布上平均达到完全相同的精度。因此,这些定理通常被引用,以支持个人问题需要特别量身定制的电感偏见。几乎所有均匀采样的数据集具有很高的复杂性,但现实世界中的可能性不成比例地生成低复杂性数据,我们认为神经网络模型具有使用Kol-Mogorov复杂性正式化的相同偏好。值得注意的是,我们表明,为特定域而设计的Ar奇数(例如计算机视觉)可以在看似无关的域上压缩数据集。我们的实验表明,预先训练甚至随机初始化的语言模型更喜欢产生低复杂性序列。虽然没有免费的午餐定理似乎表明单个概率需要专业的学习者,但我们解释了通常需要进行人工干预的任务,例如当稀缺或大量数据可以自动化为单个学习算法时选择适当尺寸的模型。这些观察结果证明了通过越来越小的机器学习模型集合统一看似不同的问题的深入学习的趋势。
致: 克拉斯·克诺特先生 巴勃罗·埃尔南德斯·德科斯先生 主席 金融稳定理事会 巴塞尔银行监管委员会主席 埃里克·泰登先生 让-保罗·塞维斯先生 候任主席 巴塞尔银行监管委员会主席 国际证监会组织 法比奥·帕内塔先生 卡迈恩·迪·诺亚先生 主席 金融和企业事务主任 支付和市场基础设施委员会 经济合作与发展组织 抄送: 约翰·辛德勒先生 尼尔·埃肖先生 秘书长 金融稳定理事会 巴塞尔银行监管委员会秘书长 塔金德·辛格先生 代理秘书长 秘书处负责人 国际证监会组织 支付和市场基础设施委员会 塔拉·赖斯女士欢迎二十国集团继续在人工智能领域发挥领导作用,经济合作与发展组织(“OECD”)、金融稳定理事会(“FSB”)、国际证监会组织(“IOSCO”)、巴塞尔银行监管委员会(“BCBS”)和支付与市场基础设施委员会(“CPMI”)在合作和协调评估人工智能对资本市场的影响方面所展现出的领导力。FSB和IOSCO最近发布了2024年最新工作计划,增加了对人工智能的关注。我们期待支持这些努力,并重视金融稳定参与小组(“FSEG”)在支持监管发展(包括监督)一致性方面可能发挥的作用,因为这项技术具有跨部门的固有性质。人工智能已在金融服务业使用多年,但由于生成人工智能(“GenAI”)和预测人工智能(“PredAI”)的进步,最近人们对人工智能的关注度有所提高。随着当局在 2024 年开始就这一主题开展新的工作,包括审查潜在的金融稳定风险影响,GFMA 希望分享行业对资本市场使用人工智能和监管方法的关键考虑因素的看法。金融服务业是最早和最突出的人工智能行业之一;它“已有数十年的历史,在金融服务领域有着长期的应用。”2 多年来,公司一直使用“传统”形式的人工智能和机器学习,因此根据其现有的监管规则,制定了治理流程来监督、管理和监控其人工智能的应用。
b“ Helly定理的两个著名扩展是Katchalski和Liu(1979)的分数Helly定理,以及B \ XC3 \ XA1R \ XC3 \ XC3 \ XA1NY,KATCHALSKI,KATCHALSKI,and PACH(1982)。改进了最近的一些作品,我们证明了这两个结果的最佳组合。我们表明,鉴于r d中的n凸立f族f d case f d con \ xce \ xce \ xb1 n d +1(d + 1)f的f具有至少1个相交的体积,那么一个人可以选择\ xe2 \ x84 \ x84 \ x84 \ xa6 d,\ xa6 d,\ xce \ xb1(\ xb1(xb1 n)的成员, \ xe2 \ x84 \ xa6 d(1)。此外,在该定理的帮助下,我们建立了(P,Q)Alon和Kleitman定理的定量版本。令P \ Xe2 \ X89 \ Xa5 Q \ Xe2 \ X89 \ Xa5 D + 1 + 1,然后f为a \ Xef \ XAC \ XAC \ X81NITE凸的凸族集合,使得f的任何P元素中的任何Q元素在Q元素中至少有Q的相互作用。然后,我们证明存在o p,q(1)体积 最后,我们提出了有关定量Helly Theoerm的直径版本的扩展。”最后,我们提出了有关定量Helly Theoerm的直径版本的扩展。”
g中的每个元素a和h中的每个元素h,h中的每个元素,元素a * h * a -1也在h中。换句话说,该操作在由整个组的元素结合时保留了子组的结构。示例5:在常规多边形的旋转和反射组中,由所有旋转组成的亚组是正常的亚组。当您通过任何其他旋转结合旋转时,结果仍然是旋转。iii。结果和讨论Sylow的愿景:开创性群体理论:路德维希·西洛(Ludwig Sylow)的工作标志着小组理论研究中的转折点。他认识到,通过调查有限群体的亚组,我们可以对该群体的性质获得宝贵的见解。Sylow的定理,特别是解决了有限组中主要功率顺序的子组的分布。这个概念是开创性的,因为它为理解群体因素化以及正常和非正常亚组的复杂性铺平了道路。
摘要表明,与Lebiedow-Icz等人的主张相反。(Phys Rev D 105(1):014022,2022)在适当的物理变量中配制的较低定理(Phys Rev 110(4):974–977,1958)用于软光子发射不需要任何模拟。我们还拒绝Lebiedowicz等人的批评。(2022)论文(Phys。Burnett和Kroll。修订版Lett。 20:86–88,1968; Nucl Phys B 307:705–720,1988年的Lipatov。 同时,我们确定了Burnett and Kroll(1968)中的一些不准确性,以呈现软孔定理的旋转一半属性。 我们还指出了经典教科书中低定理的缺点(Berestetskii等人 量子电动力学。 Pergamon Press,牛津,1982年; Lifshitz和Pitaevsky在相对论量子理论中,第2部分,Fizmatlit,2002)。Lett。20:86–88,1968; Nucl Phys B 307:705–720,1988年的Lipatov。同时,我们确定了Burnett and Kroll(1968)中的一些不准确性,以呈现软孔定理的旋转一半属性。我们还指出了经典教科书中低定理的缺点(Berestetskii等人量子电动力学。Pergamon Press,牛津,1982年; Lifshitz和Pitaevsky在相对论量子理论中,第2部分,Fizmatlit,2002)。
考虑一个开放的量子系统,其相关的希尔伯特空间 H 的维数为 N 。设 ˆ ⇢ 描述其在给定初始时间的状态,设 ˆ ⇢ 0 为某个固定时间后的状态。设 T : B ( H ) ! B ( H ) 为连接这两个状态的映射。第一个观察结果是映射 T 必须是线性的。其原因在于第 1.1 节中介绍的密度矩阵的物理意义,以及“无知线性传播”的座右铭,这在经典和量子情况下都是有效的。如果一个系统处于状态 | 1 i 的概率为 p 1 ,处于状态 | 2 i 的概率为 p 2 ,并且如果 | 1 i 演变为 | 0