对某些主要植物化学物质的定量分析和对ampelocissus latifolia(Roxb。)元素的测定planch theng K. B.1,Korpenwar A. N. 2 1 Late B. S. Arts,N。G. Science and A. G. Commerce College,Sakharkherda,Maharashtra,India 2 Rashtrapita Mahatma Gandhi Arts Arts Collector,Nagbhid,Nagbhid,Dist。Chandrapur,印度马哈拉施特拉邦,印度对叶片latifolia tuberous根的抽象定量分析,以通过标准方法鉴定诸如总生物碱,类黄酮,皂苷和Terpenoids之类的植物基质。定量估计表明,阿姆皮西斯latifolia结节粉含有生物碱:9.6%,类黄酮:8.14%,萜类化合物:5.23%和皂苷:13.58%。乙醇肥皂的提取粉末粉末,显示了总共有24个元素,例如Al,B,Ba,Ba,Ca,Ca,Ca,Cr,Cu,Cu,Cu,Cu,Fe,hf,hf,hf,hf,hf,hf,hf,hf,hf,hf,k,li,mg,mg,mn,mn,mo,na,na,ni,ni,yb y y y,y,y,y,y,对六个元素的定量分析显示为Fe = 0.051 ppm,mg = 0.045 ppm,al = 2.06 ppm,k = 0.49 ppm,CA = 0.09 ppm,CR = 0.00009 ppm。在XRD分析中获得的元素也得到了ICP-AES结果。元素含量取决于各种因素,例如气候,植物标本的位置和植物生长的土壤组成。块茎根中存在各种植物化合物和元素表明该植物在医学中的潜力。关键字:ICP-AES光谱法,X射线衍射,Ampelocissus latifolia,Soxhlet提取。I.it简介药用植物单独或组合中用于各种药物制剂(1)。在植物中发现的一个主要的二级代谢产物,例如生物碱,类固醇,单宁和苯酚化合物,它们在植物的几乎所有部分中都或几乎所有部分产生并沉积了(2)(2)。药用植物和矿物质元素的各种活性成分在代谢中起重要作用(3)。确定植物中的矿物元素非常重要,因为许多药物的质量取决于矿物质的含量和类型(4)。药理学作用的药用植物中无机元素的存在非常重要(5)。
第三届 ECATS 会议汇集了来自不同学科的研究人员,他们致力于研究有助于航空业应对其面临的许多重大环境挑战的问题。其中包括航空替代燃料、机场空气质量、气候影响、最佳飞行轨迹、飞机未来材料、推进技术。15 年来,ECATS 一直专注于这些日益重要的工作领域。ECATS 卓越网络于 2005 年在欧盟的资助下成立。2010 年,ECATS 成立了一个国际协会,其主要目标是继续召集科学和技术界,研究航空对环境的影响。时至今日,ECATS 仍继续与航空业、监管和科学界的利益相关者密切合作,以支持沟通、传播和开发活动。这些努力的一个成功结果是建立了一系列 ECATS 会议;第一次于 2013 年在柏林举行,第二次于 2016 年在雅典举行,第三次定于 2020 年 4 月在哥德堡举行。然而,世界已迅速被 COVID-19 大流行所席卷,本次会议已重新安排在 2020 年 10 月 13 日至 15 日举行,并将以虚拟方式举行。原定于 2020 年 4 月举行的会议的摘要征集吸引了大量优秀、有趣且具有前瞻性的投稿。为了保持高势头,科学委员会决定编写一本摘要书。本出版物是按会议安排的短格式和长格式摘要的组合。摘要集列出了一系列近期研究项目的新概念、成就和当前结果。这些内容共同构成了将于 10 月提交的工作大纲。机场空气质量会议概述了飞机发动机排放对环境和人类健康的影响。会议为许多机场研究设定了背景,开幕式介绍了对飞机发动机超细颗粒物排放对健康的潜在影响的调查。许多贡献旨在扩大对使用 CFD 和拉格朗日粒子模型对飞机排放进行建模的理解。我们建模能力的进步将有助于更好地了解飞机发动机排放对区域和当地空气质量的影响。本次会议的贡献表明,机场内及周围的超细颗粒物数量浓度可能增加,这可归因于飞机活动。此外,还报告了一项欧洲主要研究中正在进行的工作,以更好地了解飞机发动机的颗粒物排放。本次会议汇集了最具创新性的机场空气质量研究,以提供发展和成果的综合。这些成果将帮助业界制定更强有力的方法来理解和减轻影响。气候影响和缓解概念会议探讨了大气机制和原理,即航空业如何导致气候变化,特别是关注非二氧化碳影响和可用的有希望的缓解方案。展示了对全球航空影响定量估计的综合评估以及对尾迹和尾迹卷云、氮氧化物排放和气溶胶-冰云相互作用的气候影响的详细研究。介绍了替代技术和运营概念的缓解潜力,包括对尾迹缓解策略、电动和混合动力飞机、蒸汽喷射和回收航空发动机的研究。探索了借助战略计划和基于市场的措施实施此类替代概念的概念。
简介:T 2 和 T 1 估计可改善各种病理的特征描述,但较长的扫描时间阻碍了定量 MRI (qMRI) 的广泛应用,因此已经开发了序列以实现高效的 3D 采集。例如,3D-QALAS 1 利用交错的 Look-Locker 采集和 T 2 准备脉冲来对 T 1 和 T 2 进行全脑量化。但是,3D-QALAS 应用恒定翻转角并在 5 个时间点重建图像,这些时间点由于冗长的回波序列期间的信号演变而出现模糊。总结图 1,我们建议通过以下方式改进 3D-QALAS:(1) 结合基于子空间的重建来解决完整的时间动态以消除模糊 (2) 使用与自动微分兼容的模拟通过 Cramer-Rao 界限 (CRB) 优化采集翻转角,(3) 并减少每重复时间 (TR) 的总采集次数以缩短扫描时间。方法:子空间重建:传统 3D-QALAS 应用 T 2 准备和反转脉冲并测量 5 次采集,每次采集都利用 4 度翻转的回声序列。不是为 5 次采集中的每次采集重建一个体积,而是让 𝐸 成为 3D-QALAS TR 中 𝐴 采集之一中的回声数量(通常 𝐴= 5,𝐸= 120 →𝑇= 120 × 5 = 600 𝑒𝑐ℎ𝑜𝑒𝑠/𝑇𝑅 ),其中 𝑇 是回声总数。我们生成一个信号演化字典,用 SVD 计算低维线性基 Φ,从而产生一个易于处理的重建问题 𝑎𝑟𝑔𝑚𝑖𝑛 𝛼 ‖𝑦−𝐴Φ𝛼‖ + 𝑅(𝛼) ,其中 𝐴 表示傅里叶、线圈和采样算子以及 𝑅 正则化。通过使用 𝑥= Φ𝛼 解析时空体积,我们旨在利用与 𝑇 回声 2 的字典匹配来估计更清晰的定量图。图 2 (A) 中的体内实验表明,使用子空间可以减少估计的 T 2 图中的模糊。 CRB 翻转角优化:我们通过最小化两种方式的 CRB 来优化 3D-QALAS 中的翻转角:(1) 优化每个回波序列的一个翻转角 (2) 优化每个回波序列中的所有翻转角。我们使用传统的 4 度翻转角初始化了这两种优化,利用了代表性组织参数 [T 2 =70ms、T 1 =700ms、M0=1] 和 [T 2 =80ms、T 1 =1300ms、M0=1],并最小化了基于 CRB 的成本函数。我们为 3D-QALAS 实现了自动微分兼容信号模拟 3,从而能够计算基于 CRB 的优化的梯度。减少采集:我们通过从 TR 末尾移除采集,设计了具有 A ={5,4,3} 采集的优化序列,从而加快了扫描速度。实验:我们在扫描仪上实施了针对每个回波序列进行优化的 3D-QALAS 序列,并使用 Mini System Phantom、型号 #136(CaliberMRI,美国科罗拉多州博尔德)和人类受试者(经 IRB 批准)上的常规和优化序列采集数据,进行了 3 次和 5 次采集(1x1x1mm3 分辨率,R=2)。我们比较了使用子空间重建(秩 = 3)和字典匹配估计的定量图。结果:优化序列:图 2(B)绘制了优化的翻转角和(C)与应用子空间重建进行定量估计时的传统序列相比的所得 CRB。优化可以减少 CRB 或者以更少的采集次数匹配传统的 5 次采集 CRB,从而有可能缩短扫描时间。模型和体内:图 3(A)和(B)显示了从模型和体内数据估计的图,其中每个 ETL 翻转角优化的序列(A=3,5 次采集)与恒定翻转角匹配。讨论和结论:未来的工作将实施全翻转角优化序列来解决未来实验中的 T 1 偏差。将子空间重建与自动微分启用的翻转角优化相结合,可获得改进的 3D-QALAS 序列,并将扫描时间缩短 1.75 倍。参考文献:[1] Kvernby, S. et al. J. Cardiovasc. Magn. Reson. 16 , 102 (2014)。[2] Tamir, JI 等人 Magn. Reson. Med. 77 , 180–195 (2017)。[3] Lee, PK 等人 Magn. Reson. Med. 82 , 1438–1451 (2019)。致谢:NIH R01 EB032708、R01HD100009、R01 EB028797、U01 EB025162、P41 EB030006、U01 EB026996、R03EB031175、R01EB032378、5T32EB1680