[9]“ Agribot无人机:印度的第一台DGCA型认证农业无人机-Iotechworld”,Iotechworld-我们从事农业,调查,监视,无人机物流领域,2024年1月16日。 https://iotechworld.com/indian-government-prast-first-rone-drone-grone-agribot-uav-drone/。[10] R. Koerhuis,“自主播种机和种植者项目”,未来耕作,Jun.10,2021.https:///www.futurefarming.com/tech-inmous-seeder-seeder-seeder-seeder-seeder-and-planter-projects/ [11]农业,12月28,2020.https://www.futurefarming.com/tech-inch-in-focus/moondino-rice-paddy-paddy-robot-for- for-自动weeding/。[12] V. Vorotnikov,“新的俄罗斯农业机器人正在追踪实地试验”,Future Farming,Jun。2021。https://www.futurefarming.com/tech-in-focus/new-russian-agricultural-robot-is-is-is-is-track-track-to-field- triel- trib- trial- [13] S. [在线]。 可用:https://www.inc.com/sonya-mann/blue-river-technology-ai.html。 [14] P. Hill, “Robotriks autonomous platform is low-cost farm assistant,” Future Farming, Jan. 04, 2021. https://www.futurefarming.com/tech-in-focus/robotriks-autonomous-platform-is-low-cost-farm- assistant/ [15] Y. Onishi, T. Yoshida, H. Kurita, T. Fukao,H。Arihara和A. Iwai,“使用深度学习的自动化水果收获机器人”,Robomech Journal,第1卷。 6,不。 1,2019年11月1日,doi:10.1186/s40648-019-0141-2。2021。https://www.futurefarming.com/tech-in-focus/new-russian-agricultural-robot-is-is-is-is-track-track-to-field- triel- trib- trial- [13] S.[在线]。可用:https://www.inc.com/sonya-mann/blue-river-technology-ai.html。[14] P. Hill, “Robotriks autonomous platform is low-cost farm assistant,” Future Farming, Jan. 04, 2021. https://www.futurefarming.com/tech-in-focus/robotriks-autonomous-platform-is-low-cost-farm- assistant/ [15] Y. Onishi, T. Yoshida, H. Kurita, T. Fukao,H。Arihara和A. Iwai,“使用深度学习的自动化水果收获机器人”,Robomech Journal,第1卷。6,不。1,2019年11月1日,doi:10.1186/s40648-019-0141-2。
20 世纪 90 年代,人们开始呼吁保护海洋生物多样性。全球生物多样性公约、欧盟栖息地指令以及奥斯陆和巴黎公约的最新发展都向前迈出了重要一步。在每种情况下,海洋保护区都被认为在维持海洋生物多样性方面发挥着关键作用。栖息地指令要求维护或恢复欧洲关注的自然栖息地和物种,并使其处于有利的保护状态,而管理特别保护区 (SAC) 网络是实现这一目标的主要手段之一。在该指令附件 I 和 II 中规定的栖息地和物种中,有几个是海洋特征,英国已经为其中许多海洋特征选定了 SAC。但要有效管理特定栖息地和物种,需要清楚了解它们的分布、生物学和生态学以及它们对变化的敏感性。在此基础上,可以得出和应用有关管理和监测的现实指导。目前正在进行的一项旨在帮助实施《栖息地指令》的举措是英国海洋 SACs LIFE 项目,该项目涉及英国自然、苏格兰自然遗产、威尔士乡村委员会、环境和遗产服务、联合自然保护委员会和苏格兰海洋科学协会之间的四年合作(1996-2001 年)。该项目的总体目标是在 12 个候选海洋 SAC 站点上建立管理方案。该项目的一个关键组成部分是评估人类活动与这些站点上的附件 I 和 II 兴趣特征之间可能发生的相互作用。通过定义可能产生有益、中性或有害影响的活动,并举例说明可以防止或尽量减少不利影响的管理措施,这一理解将为更好地管理这些特征提供依据。英国海洋 SAC 项目的任务 3.2 旨在“确定和开发适当的方法来记录、监测和报告附件 I/II 利益的自然特征和条件以及相关环境因素”。任务 3.2 的主要成果是出版一本“关于监测方法和程序的出版书籍”,供英国政府法定自然保护机构工作人员及其主要合作伙伴在制定欧洲海洋遗址监测计划时使用。《海洋监测手册》满足了这一要求。《海洋监测手册》介绍了监测英国水域海洋 SAC 内附件一栖息地和选定附件二物种背后的原则和程序,以根据指令的相关要求和英国的现场监测通用标准评估其状况。《海洋监测手册》提供了有关不同选项及其相对成本和收益的指导,并描述了当前监测附件一栖息地和海洋 SAC 内宽吻海豚、灰海豹和普通海豹的最佳实践,以协助评估其状况。它借鉴了英国海洋 SAC 项目任务 1.2 下进行的实地试验提供的信息,以确保所有建议都有合理的实际基础。本手册旨在提供海洋现场监测工具包,使那些进行监测的人能够选择和使用适当的方法。它并未规定所需监测的性质,但能够根据资源可用性和其他实际情况做出良好的监测决策。
指示能源武器:对反无人机任务的兴趣日益增加,美国和其他几个国家正在投资定向能源武器(包括激光器),以抵抗无人机威胁。这些高功率系统使用电磁能引起各种影响,从威慑到破坏。但是,它们在某些天气条件下的长期健康影响和有效性尚不清楚。定向的能量武器(露水)可能会影响多个目标,因为它们的较大光束尺寸类似于毫米波武器。这些设备可以产生从非致命到致命的各种影响,这取决于诸如目标,距离和聚焦区域的因素。露水利用这种影响范围来对威胁的响应,从临时资产残疾到破坏。露水可以否认进入区域的入口或防止敌人资产在其中运行,而不会造成长期损害。国防部的主动拒绝系统使用毫米波在皮肤中产生暖气,暂时说服个人搬走。Dews还可以通过将传感器与Glare超载,在增加力之前充当非语言警告,从而降低敌人的资产。如有必要,露水可以通过发射电磁材料最有效地吸收的电磁能来损坏或破坏敌人的资产,从而融化它。自2014年以来,美国军方已经测试了各种露珠原型,主要用于反无人机任务。尽管年度研究和开发支出为10亿美元,但桥接露水开发和获取方面的挑战可能会限制广泛的运营用途。DEW研发一直在全球数十年来一直在进行,目前由技术进步和保持战场上的竞争力的愿望驱动。现代露水更具便携式和实用性,因为创新(例如较小的激光器)可以使操作更安全。根据2021年空军的报告,美国和其他30个国家主要用于反无人机任务。dews由于光的能量发射速度,几乎无限的弹药和易于渐变的响应,因此对致命反应工具的潜在潜力是非致命的。国防部可以根据任务需求量身定制露水,从非致命的反应到致命的反应。露水的研发也可能受益于平民用途,例如通过定向能源将电力运输到偏远地区。但是,技术限制构成了挑战。露水与目标距离越远,大气条件限制了它们的有效性。露水的战场使用可能由于对朋友和敌人资产的潜在伤害而具有挑战性。对露水对暴露于有指导能量的人的长期健康影响的道德问题提出了有关使用这种技术的伦理问题的问题。我们将继续担任美国陆军快速能力和关键技术的首要承包商间接防火能力高能激光计划,该计划旨在开发300千瓦的班级激光武器系统。这种高能激光技术对新兴威胁的迅速反应,同时与传统的动力学系统相比,后勤复杂性最小化。我们以前的合同包括1.3亿美元用于设计,制造和将激光系统集成到陆军车辆平台上,并在新墨西哥州的White Sands导弹系列进行实地试验。作为主要承包商,我们的职责包括系统的最终组装,集成和测试。