物理学学位课程 2007/2008 学年课程和计划 线性代数 教师: Prof. CATENACCI Roberto 电子邮箱: roberto.catenacci@mfn.unipmn.it CFU 数: 6 年: 1 教学期: 2 学科代码: S0140 课程计划和推荐教材: 计划 考试方式:笔试和口试。实数和复数向量空间、生成器和基、子空间及其之间的运算、平面和空间中的平面和线、标量积和厄米积。线性应用和相关矩阵、行列式、秩和迹、核和图像、基的变化。线性系统理论。一些值得注意的矩阵类及其性质:特征值和特征向量、对称和 Hermitian 矩阵的对角化、特征多项式、凯莱-汉密尔顿定理及其应用。欧几里得几何:双线性形式和二次形式。二次形式的对角化。标量积。推荐文本 文本将在课堂上注明 教师笔记 数学分析 I 教师:GASTALDI Fabio 教授 电子邮件:fabio.gastaldi@mfn.unipmn.it CFU 数量:8 年:1 教学期:1 学科代码:S0136 计划 该课程由理论课和实践练习组成。考试包括笔试和口试。涵盖的主题:实变量的实函数:术语、运算及其对图形、组成的影响;反函数和相关例子。实变量的实函数的极限;左右限位。极限和代数运算;符号永久性定理和两名宪兵永久性定理。显著的局限性;无限的限制;单调函数的极限。连续函数;连续性和代数运算、符号的持久性。连续性和组成性;变量在限度内的变化。衍生物;右和左导数。可微函数的例子;可微函数的连续性。导数和代数运算;复合函数的导数。零点与中间值定理;反函数的连续性和可微性。反函数的例子及其导数的计算。相对的高点和低点;必要条件。罗尔、柯西、拉格朗日定理;零导数定理。单调性和派生性;不确定形式。洛必达定理及其后果。无限与无穷小;应用于不确定形式。带有皮亚诺和拉格朗日余项的泰勒公式。凸函数及其性质;拐点。基元及其多重性;不定积分;通过分部和替换进行不定积分。黎曼积分;几何解释。积分的线性和单调性。积分中值定理。连续或单调函数的可积性。关于区间的可加性。积分函数。积分学基本定理;通过替换和分部积分公式。推荐文本 Bramanti、Pagani、Salsa:数学、无穷小微积分和线性代数。 Ed. Zanichelli Marcellini,Sbordone:数学练习(2 卷)。 Ed. Liguori 老师将提供与特定主题相关的补充材料。
TGT形式的实际数字:自然数,整数,数字线上的理性数字的表示。通过连续的放大倍率在数字线上表示终止 /非终止重复小数的代表。有理数作为重复 /终止小数。非经常性 /非终止小数的示例。存在非理性数字(非理性数字)及其在数字线上的表示。解释每个实际数字都由数字行上的唯一点表示,相反,数字行上的每个点代表一个唯一的实际数字。具有整体权力的指数定律。具有正真实基础的理性指数。实数的合理化。欧几里得的分区引理,算术的基本定理。根据终止 /非终止重复小数的延长有理数的扩展。基本数理论:Peano的公理,诱导原理;第一本金,第二原理,第三原理,基础表示定理,最大的整数函数,可划分的测试,欧几里得的算法,独特的分解定理,一致性,中国余数定理,数量的除数总和。Euler的基本功能,Fermat和Wilson的定理。矩阵:R,R2,R3作为R和RN概念的向量空间。每个人的标准基础。线性独立性和不同基础的例子。R2的子空间,R3。 翻译,扩张,旋转,在点,线和平面中的反射。 基本几何变换的矩阵形式。R2的子空间,R3。翻译,扩张,旋转,在点,线和平面中的反射。基本几何变换的矩阵形式。对特征值和特征向量的解释对这种转换和不变子空间等特征空间的解释。对角线形式的矩阵。将对角形式还原至命令3的矩阵。使用基本行操作计算矩阵倒置。矩阵的等级,使用矩阵的线性方程系统的解决方案。多项式:一个变量中多项式的定义,其系数,示例和反示例,其术语为零多项式。多项式,恒定,线性,二次,立方多项式的程度;单一,二项式,三项官员。因素和倍数。零。其余定理具有示例和类比整数。陈述和因素定理的证明。使用因子定理对二次和立方多项式的分解。代数表达式和身份及其在多项式分解中的使用。简单的表达式可还原为这些多项式。两个变量中的线性方程:两个变量中的方程式简介。证明两个变量中的线性方程是无限的许多解决方案,并证明它们被写成有序成对的真实数字,代数和图形解决方案。两个变量中的线性方程对:两个变量中的线性方程。不同可能性 /不一致可能性的几何表示。解决方案数量的代数条件。 二次方程:二次方程的标准形式。解决方案数量的代数条件。二次方程:二次方程的标准形式。通过取代,消除和交叉乘法,将两个线性方程对两个变量的求解。
我们回顾了从理论上处理宇称时间 (PT) 对称非厄米量子多体系统的方法。它们被实现为具有 PT 对称性并与环境相容的耦合的开放量子系统。PT 对称非厄米量子系统表现出各种迷人的特性,使它们在一般的开放系统中脱颖而出。后者的研究在量子理论中有着悠久的历史。这些研究基于组合系统-储层装置的厄米性,由原子、分子和光学物理学以及凝聚态物理学界开发。数学物理学界对 PT 对称非厄米系统的兴趣导致了新的视角和 PT 对称和双正交量子力学优雅数学形式主义的发展,这些形式主义不涉及环境。在数学物理研究中,重点主要放在哈密顿量的显着光谱特性和相应单粒子本征态的特征上。尽管哈密顿量不是厄米量的,但它们可以显示所有特征值都是实数的参数区域。然而,为了研究凝聚态物理中出现的量子多体现象并与实验取得联系,人们需要研究可观测量和关联函数的期望值。此外,人们必须研究统计集合而不仅仅是特征态。凝聚态界部分人士采用 PT 对称和双正交量子力学的概念,导致该方法论处于争议之中。对于一些基本问题,例如,什么是适当的可观测量,如何计算期望值,什么是充分的平衡统计集合及其相应的密度矩阵,人们并没有达成共识。随着工程和控制开放量子多体系统的技术进步,现在是时候将厄米量与 PT 对称和双正交观点相协调了。我们全面回顾了不同的方法,包括伪厄米性的过度思想。为了激发我们在这里宣传的厄米观点,我们主要关注辅助方法。它允许将非厄米系统嵌入到更大的厄米系统中。与其他技术(例如主方程)相比,它不依赖于任何近似值。我们讨论了 PT 对称和双正交量子力学的特性。在这些中,被认为是可观测量的东西取决于哈密顿量或选定的(双正交)基。此外,至关重要的是,被称为“期望值”的东西缺乏直接的概率解释,而被视为正则密度矩阵的东西是非平稳和非厄米的。此外,时间演化的非幺正性隐藏在形式主义中。我们选取了几个模型哈密顿量,到目前为止,这些模型要么是从厄米角度研究的,要么是从 PT 对称和双正交角度研究的,并在各自的替代框架内研究它们。这包括一个简单的两级单粒子问题,但也包括显示量子临界行为的多体晶格模型。比较这两种计算的结果,可以发现厄米方法虽然在某些方面很笨拙,但总能得出物理上合理的结果。在极少数情况下,如果可以与实验数据进行比较,它们还会一致。相比之下,数学上优雅的 PT 对称和双正交方法得出的结果在一定程度上难以物理解释。因此,我们得出结论,厄米方法应该是
[1] Merkepci,M。和Abobala,M。,“基于精致的中性粒细胞整数融合和El Gamal算法加密不确定的有理数据单元的安全模型”,融合:实践和应用,2023.[2] Merkepci,M。和Abobala,M。,“在一些有关分裂复杂数字,对角度问题以及对公共密钥非对称密码学的应用的新结果”,《数学杂志》,Hindawi,2023年,2023年,2023年,[3] S. A. Aparna J R,“使用Diffie Hellman Key Exchange的图像水印”,在国际信息与通信技术会议上,印度高知,2015年。[4] https://www.bsi.bund.de/en/themen/unternehmen-und-organisationen/informationen/informationen-empfehlungen/ki-in--in--in--in--in--in-der-krypptogrie-最后一个徒步旅行:6/17/2024。[5] Abobala,M。和Allouf,A。,“针对2×2模糊矩阵进行加密和解密的新型安全计划,其基于中性嗜性整数和El-Gamal Crypto-System的代数的合理条目和合理条目”[6] Merkepci,M.,Abobala,M。和Allouf,A。,“融合中性粒细胞学理论在公共密钥密码学中的应用以及RSA算法的改进”,融合:实践和应用:2023.[7] Abobala,M。,(2021)。中性粒数理论的部分基础。中性嗜性套装和系统,第1卷。39。[8] Hasan Sankari,Mohammad Abobala,“使用2个循环精制整数对RSA加密系统的概括”,《网络安全与信息管理杂志》,第1223卷,2023年。[10] Kumar,S。,&Ojha,P。K.(2020)。(2024)。(2024)。[9]穆罕默德·阿巴巴拉(Mohammad Abobala),哈桑·桑卡里(Hasan Sankari)和穆罕默德主教Zeina,“基于基于2个环保精制整数的新型安全系统以及2-Cyclic精制数字理论的基础”,《模糊扩展与应用杂志》,第2024页。“使用模糊逻辑和矩阵操纵的新型加密算法。”信息安全与应用程序杂志,54,102565。doi:10.1016/ j.jisa.2020.102565。[11] Shihadeh,A.,Matarneh,K。A. M.,Hatamleh,R.,Hijazeen,R。B. Y.,Al-Qadri,M。O.,&Al-Husban,A。基于中性粒子实数的两个模糊代数的示例。中性嗜性套装和系统,67,169-178。[12] Abdallah Shihadeh,Khaled Ahmad Mohammad Matarneh,Raed Hatamleh,Mowafaq Omar al-Qadri,Abdallah al-Husban。在2≤3的两倍模糊N型中性粒子环上进行了2≤3。中性粒子集和系统,68,8-25。[13] Al-Husban,A.,Salleh,A。R.,&Hassan,N。(2015)。复杂的模糊正常亚组。在AIP会议上(第1卷1678,编号1)。AIP出版。[14] Abdallah al-Husban&Abdul Razak Salleh 2015。复杂的模糊环。第二届国际计算,数学和统计会议论文集。页。241-245。发布者:IEEE2015。[15] Roy,S.,Pan,Z.,Abu Qarnayn,N.,Alajmi,M.,Alatawi,A.,Alghamdi,A.(2024)。一个可靠的最佳控制框架,用于控制食管癌中异常RTK信号通路。数学生物学杂志,88(2),14。(2023)。[16] Roy,S.,Ambartsoumian,G。和Shipman,B。最佳控制框架,用于建模前列腺癌中的动力学和雄激素剥夺疗法(博士学位论文)。
数学是一种通用的语言,几个世纪以来一直着迷,其优雅令人着迷。从古希腊的几何形状到现代抽象代数,数学继续推动界限,扩大了人类的理解。某些问题特别具有挑战性,即使是几代人最聪明的数学家也迷住了。寻求解决这些“有史以来最艰难的数学问题”的追求反映了人类的好奇心,并开车揭示了数学秘密。这些神秘的难题通常是研究的基础,深入研究基本概念和未知领域。他们需要创新的思维,严格的证据和对数学结构的深刻理解。解决它们可能会导致物理,计算机科学,加密和经济学方面的突破性发现。粘土数学学院的千年奖项问题收藏集是最著名的“有史以来最艰难的数学问题”之一。以每种解决方案获得100万美元的奖金,这些问题吸引了数学家的全球关注。它们代表了现代数学最深刻的未解决问题,包括数字理论,几何和逻辑。由伯恩哈德·里曼(Bernhard Riemann)于1859年提出的Riemann假设探索了质数的分布,并指出所有非平凡的零位于特定的垂直线上。证明这将对理解素数具有重要意义。Yang -Mills的存在和质量差距问题涉及粒子物理学的基本理论,质疑理论中“质量差距”的存在。P与NP问题探讨了计算问题的可溶性和可验证性之间的关系,对计算机科学,加密和优化产生了深远的影响。Navier -Stokes的存在和平滑度问题解决了Navier -Stokes方程解决方案,这些解决方案在天气预报,流体动力学和其他领域中具有至关重要的应用。最后,Hodge猜想探讨了代数几何与拓扑之间的关系,试图确定是否可以将某些几何对象表示为简单的几何对象。追求解决复杂的数学问题对我们对几何,拓扑和整个宇宙的理解具有深远的影响。值得注意的例子包括由Grigori Perelman在2003年解决的Poincaré猜想,它阐明了空间的形状,以及与数字理论和密码学的密切相关的桦木和Swinnerton-Dyer猜想。其他具有挑战性的数学问题,例如Collatz猜想,Goldbach猜想和双重猜想,已经吸引了数十年的数学家。尽管它们很简单,但这些问题仍未解决,Collatz的猜想提出了一个过程,该过程将始终达到1,而不论起始整数如何。追求解决这些看似不可能的数学问题对我们对世界的理解产生了深远的影响。它提高了数学知识,启发创新,推动技术进步并扩展我们对宇宙的理解。旅程本身可以与目的地一样有价值,从而导致新发现和见解。人类精神无限的好奇心及其对揭开数学奥秘的持久追求仍然是这种智力挑战背后的推动力。数学不仅在于解决问题,还涉及探索新想法并对其美丽和复杂性有更深入的了解。许多数学家认为,庞加莱的猜想是有史以来最具挑战性和最重要的问题之一。花了一个多世纪的时间来证明并对拓扑和我们对空间的理解产生了深远的影响。尽管某些数学问题可能保证了解决方案,但许多未解决的问题继续激发创新并推动各个领域的进步。数学家采用多种技术和方法来解决困难问题,包括探索现有理论,开发新方法,与他人合作以及检验许多假设。学习未解决的数学问题的资源很丰富,包括在线平台,书籍和有关数学历史的文章。这些资源可以提供对著名的未解决问题(例如Continuum假设)的宝贵见解,该假设探讨了自然数和实数之间是否存在大小。数学家已经确定,连续假设(CH)是与基本数学公理有关的独立陈述。这意味着CH可以是真实和错误的,而不会产生任何逻辑上的不一致。尽管这种特殊性并不独特,但它是现代数学的特征,在学术界外可能并不广为人知。CH的一致性证明跨越了几十年,并被分为两个主要部分:证明CH与基本数学原理的兼容性,并证明其否定性相同。KurtGödel通过他的1938年可构造宇宙理论为第一部分做出了重大贡献,该理论仍然是设定理论教育的基础概念。证明的后半部分是由保罗·科恩(Paul Cohen)解决的。然而,证明的两半都需要在研究生层面上对集合理论有深入的理解,这解释了为什么这个迷人的故事在数学社区之外仍未知。