Bin Chen和Edward H. Sargent,多伦多大学摘要今天的能源部门是最大的温室气体发射器,占人为CO 2排放量的约70%。 需要全球能源供应的严格脱碳才能将温度升高到1.5°C以下并到2050年达到净零。 太阳能光伏将发挥关键作用,太阳能光伏的大量升级面临许多挑战。 在这里,我们讨论了材料研究人员如何为这一全球大挑战做出贡献。 使用太阳能光伏(PV)(图1A)收获地球最丰富的可再生能源(太阳到达地球的能量)将在脱碳电力生产中起关键作用。 太阳能是能够缩放到人类所依赖的数十个Terawatts的可再生能源。 PV对净零目标的重要性在其对世界电力能力的预计贡献中可以看到,这仅随着国际能源机构(IEA)报告的渐进性(图1B,Interet)的渐进性而增加。 要达到我们的集体净零目标,需要大量的太阳PV缩放(图1b):国际技术路线图(ITRPV)所描述的最大胆的场景(ITRPV)设想2050年的世界由可再生能源100%供电,solar PV在2020年供应1%和全球供应中,包括69%的供应,包括全球供应,包括2020年的加热,包括电源。Bin Chen和Edward H. Sargent,多伦多大学摘要今天的能源部门是最大的温室气体发射器,占人为CO 2排放量的约70%。需要全球能源供应的严格脱碳才能将温度升高到1.5°C以下并到2050年达到净零。太阳能光伏将发挥关键作用,太阳能光伏的大量升级面临许多挑战。在这里,我们讨论了材料研究人员如何为这一全球大挑战做出贡献。使用太阳能光伏(PV)(图1A)收获地球最丰富的可再生能源(太阳到达地球的能量)将在脱碳电力生产中起关键作用。太阳能是能够缩放到人类所依赖的数十个Terawatts的可再生能源。PV对净零目标的重要性在其对世界电力能力的预计贡献中可以看到,这仅随着国际能源机构(IEA)报告的渐进性(图1B,Interet)的渐进性而增加。要达到我们的集体净零目标,需要大量的太阳PV缩放(图1b):国际技术路线图(ITRPV)所描述的最大胆的场景(ITRPV)设想2050年的世界由可再生能源100%供电,solar PV在2020年供应1%和全球供应中,包括69%的供应,包括全球供应,包括2020年的加热,包括电源。
在精确的牲畜种植中,牛的个体识别对于为赋予动物福利,健康和生产力做出的决定提供了至关重要的。在文字中,存在可以读取耳罩的模型;但是,它们不容易携带到现实世界中的牛生产环境,并主要在静止图像上做出预测。我们提出了一个基于视频的牛耳牌阅读系统,称为deRmycow,该系统利用视频中的节奏特性来准确检测,跟踪和读取边缘设备上25 fps的牛耳标。对于视频中的每个帧,ReDmycow在两个步骤中发挥作用。1)标签检测:Yolov5s对象检测模型和NVIDIA DEEPSTREAM跟踪层检测并跟踪存在的标签。2)标签读数:小说whentoread mod-ule决定是读取每个标签,使用trba场景文本识别模型或使用从前框架上读取的读数。该系统是在边缘设备上实现的,即NVIDIA JETSON AGX ORIN或XAVIER,使其可移植到没有外部计算资源的牛生产环境中。要达到实时速度,请阅读 - MyCow仅在当前框架中读取检测到的标签,如果它认为在当前框架中明显改善决策时,它将获得更好的读数。理想情况下,这意味着即使标签被遮挡或模糊,也可以在视频中找到标签的最佳读数并存储在视频中。在真正的中西部奶牛场住房测试该系统时,9,000头母牛,雷米科(Demmycow)系统准确地阅读了96.1%的印刷耳廓,并证明了其现实世界中的商业潜力。devmycow为商业牛农场提供了知情的数据驱动决策流程的机会。
第 DI 部分证明我是:(1) 患者,且年满 18 岁;(2) 未成年患者的父母或法定监护人;或 (3) 患者的法定监护人。此外,我特此同意 Desert Life Pharmacy 的医疗保健提供者为我注射上述疫苗。我理解不可能预测接种疫苗可能产生的所有副作用或并发症。我了解上述疫苗的风险和益处,并且已收到、阅读/已向我解释了我选择接种的疫苗的疫苗信息声明。我还承认我有机会提出问题,并且这些问题得到了令我满意的答复。此外,我承认,接种疫苗后,管理医疗保健提供者建议我留在疫苗接种地点附近约 15 分钟,以便观察。我谨代表我自己、我的继承人和个人代表,在此免除 Desert Life Pharmacy 及其员工、代理人、继任者、部门、关联公司、子公司、管理人员、董事、承包商和雇员的任何和所有已知或未知的因接种上述疫苗而引起、与之相关或与接种上述疫苗有关的责任或索赔。我承认 (a) 我了解我所在州的免疫登记处(“登记处”)的目的/好处;(b) 如果我所在州允许,我可以向 Desert Life Pharmacy 提供一份经州批准的登记处披露退出表格,反对 Desert Life Pharmacy 向登记处披露我的免疫信息;以及 (c) 除非我授权 Desert Life Pharmacy (如适用) (i) 向我的医疗保健专业人员、Medicare、Medicaid 或其他第三方付款人披露我的医疗或其他信息,包括我的传染病(包括 HIV)、精神健康和药物/酒精滥用信息,以便进行护理或付款,(ii) 向我的保险公司提交上述要求的物品和服务的索赔,以及 (iii) 要求代表我向 Desert Life Pharmacy LLC. (如适用) 支付与上述要求的物品和服务相关的授权福利。我还同意对任何共同分摊金额(包括共付额、共同保险和免赔额)以及我的保险福利未涵盖的任何要求的物品和服务承担全部经济责任。我理解,任何我应承担经济责任的付款都应在服务时支付,或者 Desert Life Pharmacy 会在服务结束后收到此类发票后向我开具发票。
我们提出了一种方法,通过解决基于模型的最优控制问题,以经济高效的方式运行电解器以满足加氢站的需求。为了阐明潜在问题,我们首先对额定功率为 100 kW 的西门子 SILYZER 100 聚合物电解质膜电解器进行实验表征。我们进行实验以确定电解器的转换效率和热动力学以及电解器中使用的过载限制算法。得到的详细非线性模型用于设计实时最优控制器,然后在实际系统上实施。每分钟,控制器都会解决一个确定性的滚动时域问题,该问题旨在最大限度地降低满足给定氢气需求的成本,同时使用储罐来利用随时间变化的电价和光伏流入。我们在模拟中说明了我们的方法与文献中的其他方法相比显著降低了成本,然后通过在实际系统上实时运行演示来验证我们的方法。
本文分析了在线增强学习算法的复杂性,即Q学习和价值意识的异步实时版本,应用于确定性域中达到目标状态的问题。先前的工作得出的结论是,在许多情况下,Tabula Rasa强化学习是针对此类问题的指定的,或者只有在增强学习算法时才可以处理。我们表明,相反,算法是可以处理的,而任务表示或初始化的模拟更改。我们在最坏情况的复杂性上提供了紧密的界限,并显示出复杂性是如何较小的,如果系统性学习算法对状态空间或域具有某些特殊属性的初始了解。我们还提出了一种新颖的双向Q学习算法,以从所有状态到目标状态找到最佳路径,并表明它不比其他算法更复杂。
摘要。目前,制造可靠的无人机(无人机)是科学和技术的一项重要任务,因为此类设备在数字经济和现代生活中有很多用例,所以我们需要确保它们的可靠性。在本文中,我们建议用低成本组件组装四轴飞行器以获得硬件原型,并使用现有的开源软件解决方案开发具有高可靠性要求的飞行控制器软件解决方案,该解决方案将满足航空电子软件标准。我们将结果用作教学课程“操作系统组件”和“软件验证”的模型。在研究中,我们分析了四轴飞行器及其飞行控制器的结构,并提出了一种自组装解决方案。我们将 Ardupilot 描述为无人机的开源软件、适当的 APM 控制器和 PID 控制方法。当今航空电子飞行控制器可靠软件的标准是实时分区操作系统,该系统能够以预期的速度响应来自设备的事件,并在隔离分区之间共享处理器时间和内存。此类操作系统的一个很好的例子是开源 POK(分区操作内核)。在其存储库中,它包含一个四轴飞行器系统的示例设计,使用 AADL 语言对其硬件和软件进行建模。我们将这种技术与模型驱动工程应用于在真实硬件上运行的演示系统,该系统包含一个以 PID 控制作为分区过程的飞行管理过程。使用分区操作系统将飞行系统软件的可靠性提升到了一个新的水平。为了提高控制逻辑的正确性,我们建议使用形式验证方法。我们还提供了使用演绎方法在代码级别以及使用微分动态逻辑在信息物理系统级别验证属性的示例,以证明稳定性。
嵌入式设备可以在本地实时处理生物医学信号,因此临床研究和治疗应用的生物医学信号分析可以受益匪浅。一个例子是分析癫痫患者的颅内脑电图 (iEEG) 以检测高频振荡 (HFO),这是致痫脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可以实时在线分析数据。在这里,我们介绍了一种神经形态系统,该系统在同一芯片上结合了神经记录头端和脉冲神经网络 (SNN) 处理核心来处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现最先进的准确性、灵敏度和特异性。这是首次使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的可行性研究。
将进行测试以确定哪些传感器可以快速、准确且一致地检测高浓度的目标成分。现场和实验室测试将包括使用不同类型的预处理工艺批量测试多个废水样品,以及使用第三方实验室测试验证结果等元素。除了传感技术外,该团队还将寻求将该技术与当前基础设施相结合。为实现这一目标,该团队将与 NESDI 传感器接口和仪器监控 (SIIM) 图形用户界面 (GUI) 项目团队合作。SIIM GUI 技术提供了与常见工业控制系统 (ICS) 接口的框架,并将为该项目将开发的传感系统提供遥测、GUI 和数据网络。
液体分析是跟踪食品、饮料和化学制造等行业是否符合严格的工艺质量标准的关键。为了在线并在最感兴趣的点分析产品质量,自动监控系统必须满足小型化、能源自主性和实时操作方面的严格要求。为了实现这一目标,我们介绍了在神经形态硬件上运行的人工味觉的第一个实现,用于连续边缘监控应用。我们使用固态电化学微传感器阵列来获取多变量、随时间变化的化学测量值,采用时间滤波来增强传感器读出动态,并部署基于速率的深度卷积脉冲神经网络来有效融合电化学传感器数据。为了评估性能,我们创建了 MicroBeTa(微传感器味道测试),这是一个用于饮料分类的新数据集,包含 3 天内进行的 7 小时时间记录,包括传感器漂移和传感器更换。我们实现的人工品味在推理任务上的能效比在其他商用低功耗边缘 AI 推理设备上运行的类似卷积架构高出 15 倍,在 USB 棒外形尺寸中包含的单个英特尔 Loihi 神经形态研究处理器上实现了比传感器读数采样周期低 178 倍以上的延迟和高精度(97%)。