功能性脑活动的准确定位具有希望使我们老龄化社会至关重要的新型治疗和辅助技术。世界人口的老龄化增加了与年龄有关的健康问题的患病率,例如身体伤害,精神障碍和中风,导致对患者,家庭和医疗保健系统的严重后果。新兴技术可以通过(i)提供有效的神经居住以及(ii)实现日常任务独立性来改善患者的生活质量。第一个挑战可以通过设计可以增强特定认知功能或治疗特定精神病/神经病理性的神经调节性接口系统来解决。这种系统可以由实时大脑活动驱动,以使用诸如经颅磁刺激[1、2]或聚焦超声[3,4]等方法选择性地调节特定的神经动力学。第二个挑战可以通过设计有效的脑机界面(BMI)来解决。常见的BMI控制信号依赖于主感觉或运动相关的激活。但是,这些信号仅反映了有限的认知过程。高阶认知信号,尤其是编码面向目标任务的前额叶皮层的高级认知信号,可能会导致更健壮和直观的BMI [5,6]。NeuroRehabicitation和BMI方法都需要一种实时测量和定位功能性脑活动的有效方法。这可以通过脑电图(EEG)[7,8]和MEG [9-11],两种非侵入性电物质技术技术来实现。eeg使用放置在头皮上的一系列电极来记录电压弹性,而MEG使用称为超导量的Quantum-tum干扰装置(Squid)[12]的敏感磁性检测器来测量在EEG中产生电势分布的相同主要电流。由于EEG和MEG捕获了由神经元电流产生的电磁场,因此它们提供了神经元活性的快速直接指数。但是,现有的MEG/EEG来源定位方法提供了有限的空间分辨率,使可以用于神经康复或BMI的信号的起源混淆,或者太慢而无法实时计算。深度学习(DL)[13]提供了一种有希望的新方法,可以实时改善源本地化。越来越多的作品成功地将DL运用到
用于人工智能和神经形态计算的硅光子学 Bhavin J. Shastri 1,2、Thomas Ferreira de Lima 2、Chaoran Huang 2、Bicky A. Marquez 1、Sudip Shekhar 3、Lukas Chrostowski 3 和 Paul R. Prucnal 2 1 加拿大安大略省金斯顿皇后大学物理、工程物理和天文学系,邮编 K7L 3N6 2 普林斯顿大学电气工程系,邮编 新泽西州普林斯顿 08544,美国 3 加拿大不列颠哥伦比亚大学电气与计算机工程系,邮编 BC 温哥华,邮编 V6T 1Z4 shastri@ieee.org 摘要:由神经网络驱动的人工智能和神经形态计算已经实现了许多应用。电子平台上神经网络的软件实现在速度和能效方面受到限制。神经形态光子学旨在构建处理器,其中光学硬件模拟大脑中的神经网络。 © 2021 作者 神经形态计算领域旨在弥合冯·诺依曼计算机与人脑之间的能源效率差距。神经形态计算的兴起可以归因于当前计算能力与当前计算需求之间的差距不断扩大 [1]、[2]。因此,这催生了对新型大脑启发算法和应用程序的研究,这些算法和应用程序特别适合神经形态处理器。这些算法试图实时解决人工智能 (AI) 任务,同时消耗更少的能量。我们假设 [3],我们可以利用光子学的高并行性和速度,将相同的神经形态算法带到需要多通道多千兆赫模拟信号的应用,而数字处理很难实时处理这些信号。通过将光子设备的高带宽和并行性与类似大脑中的方法所实现的适应性和复杂性相结合,光子神经网络有可能比最先进的电子处理器快至少一万倍,同时每次计算消耗的能量更少 [4]。一个例子是非线性反馈控制;这是一项非常具有挑战性的任务,涉及实时计算约束二次优化问题的解。神经形态光子学可以实现新的应用,因为没有通用硬件能够处理微秒级的环境变化 [5]。
一些指标,例如生产率的提高会导致其他指标的下降,即结构复杂化、成本增加、可靠性降低等等[1-7]。随着处理整数数据的科学技术问题的不断复杂化,CSC 的发展趋势是提高整数算术运算的速度(生产率)和可靠性[3, 7-9]。近年来,信息技术领域的不同科学家和工程师团体在提高计算机系统计算的生产率、可靠性、生存力和可靠性方面取得的成果表明,在位置数系统 (PNS) 的限制内实现这些目标几乎是不可能的[9-13]。这是因为现代 CSC 在 PNS 中运行的主要缺点是:处理的数字之间存在位间关系。这些关系对CSC的架构和实现算术运算的方法产生负面影响,使设备复杂化,限制了执行算术运算的速度和可靠性。在这方面,在PNS中,通过增加时钟频率,使用并行数据处理的方法和工具以及使用不同类型的预留来提高CSC的性能[14-18]。基于计算并行化、利用可解任务和算法的一些属性来提高CSC生产率的基本方法并不能在每种情况下都提高CSC的生产率。它们的应用范围仅限于一类需要解决的任务。此外,人为分解算法本身、确定和分配独立计算分支及相关操作的过程需要大量的劳动力成本,而且一般来说,并行化任意算法并不总是可行的。应该指出的是,所有现有的提高 PNS 生产力的方法都有一个共同的缺点:无法解析在基本运算级别解决的最大算法。然而,这种方法并不总能解决 PNS 中执行算术运算的速度和可靠性的根本性提高问题。迄今为止,一方面对提高实时计算机系统性能的要求越来越高,另一方面无法通过使用现有的 PNS 来满足这些要求,这两者之间存在差距。这一事实导致需要找到提高生产力的方法,例如,基于在创建 CSC 时使用新的结构解决方案。近年来进行了科学研究,确定了提高计算机系统性能的有希望的方法,基于模数系统(MNS)[7-11]的使用,现有的研究较少关注MNS中位置运算的实现问题[13-15],本文将重点解决这一问题。
人工智能 (AI) 是机器所展现的智能,与人类所展现的自然智能形成对比。人工智能研究的例子包括推理、知识表示、规划、学习、自然语言处理、感知以及移动和操纵物体的能力,这通常被视为智能控制。近年来,人工智能在机器人领域的应用呈指数级增长。人工智能在机器人的路径规划中起着至关重要的作用,可以快速响应复杂环境中的变化。它还在机器人的建模和智能控制中发挥着主导作用,允许更复杂的反馈分析、自我调整应用程序和即时适应环境变化。不断变化的工业环境,如灵活的制造设施和自动化仓库,机器人旨在与人类并肩工作,直接受益于基于人工智能算法的复杂路径规划和自主决策的进步。在消费者方面,清洁机器人和送货机器人等应用也正在成为我们日常生活的一部分。人工智能路径规划和控制算法的实施大大提高了这些机器人的效率和实用性,因为这些机器人必须运行的环境是高度动态的,需要不断适应。本研究主题归入“机器人和人工智能前沿”中的“机器人控制系统”部分。Tan 等人的第一篇文章。专注于为机器人设计机制和算法,作为路径规划和控制的平台。当前的机器人设计一直从游戏和娱乐产品 (GEA) 中汲取灵感。然而,在机器人技术中实施受 GEA 启发的设计缺乏系统性和通用性。本文基于 GEA 的启发,提出了一种系统的机器人设计范式。可以遵循问题驱动和解决方案驱动的过程,以利用 GEA 的类比,从而获得针对实际问题的机器人解决方案。通过使用可重构地板清洁机器人及其路径规划算法,展示了该设计范式的应用。由于具有推理能力,AI 在实现协作机器人的安全人机交互 (HRI) 方面起着至关重要的作用。Du 等人的文章结合了不同的 AI 技术,实现了安全 HRI 的主动避碰。采用微软体感输入设备Kinect检测进入机器人工作空间的人员,实时计算人体骨骼数据。采用具有防撞知识的专家系统分析人体行为,实现主动防撞。采用人工势场法为机器人规划新路径,如:
马瑞利推出用于赛车运动的基于人工智能的新型电子控制单元,用于发动机和车辆控制,适用于从传统到电动的所有类型的车辆推进器。该解决方案名为 VEC_480,可确保与车载实时人工智能计算的兴起趋势 100% 兼容,并将于 11 月 13 日至 14 日在德国科隆举行的专业赛车世界博览会上亮相。这项突破性技术重新定义了赛车运动传统车辆控制单元 (VCU) 的标准,提供前所未有的性能、效率、可靠性、计算能力和先进的连接性,以满足该行业日益增长的需求。与之前的 VCU 相比,新解决方案在计算能力方面提供了卓越的性能。实时计算性能提高了 2.5 倍;处理器间带宽增加了 10 倍,RAM 内存带宽得到了改善,从而能够更可靠地重复关键的车辆操作。 VCU 是高性能控制单元,将不同的功能集成到单个设备中:发动机和底盘控制和驱动、数据记录和遥测和云端网关、车载网络。基于 Marelli Motorsport 在车辆控制解决方案方面的扎实专业知识,VEC_480 旨在实时(毫秒)管理日益复杂的神经算法。这是通过采用先进的 AI 加速器 (NPU) 实现的,其计算能力高达 26 TOPS(每秒万亿次运算)。这项尖端技术为内部车辆网络和发动机或车辆管理提供了更大的潜力。设备中嵌入的强大 AI 加速器支持低延迟和高效率的实时 AI 推理,为神经虚拟传感器、人工智能数据推理、实时视频处理(轨迹检测、物体检测等)、定位和定位、性能分析、预测分析、语音识别铺平了道路。该技术还兼容并支持顶级 AI 框架,例如 TensorFlow、TensorFlow Lite、Keras、PyTorch 和 ONNX。该解决方案是对 Marelli Motorsport 在专业赛车世界博览会(10.01 展厅 3064 展位)上展示的一系列先进技术的补充。作为技术开发的加速器,Marelli Motorsport 为赛车开发创新和尖端解决方案,通过利用敏捷、快速和优化的设计,使其流向乘用车业务。关于 Marelli Marelli 是汽车行业领先的移动技术供应商。凭借在创新和制造卓越方面强大而成熟的业绩记录,我们的使命是通过与客户合作来改变移动的未来
Airbus wins ESA's LSTM temperature-check mission for Copernicus next generation Contract valued at € 380 million Airbus Spain to lead industrial consortium: first Copernicus prime for Spain @AirbusSpace #SpaceMatters @ESA_EO @CopernicusEU @CDTIoficial #CopernicusSentinel Madrid, 13 November 2020 – The European Space Agency (ESA)已选择空客防御和空间作为新的土地表面温度监测(LSTM)任务的主要承包商。LSTM是欧盟的地球观察计划哥白尼的一部分。这是六个新任务之一,扩展了当前哥白尼空间组件的功能。该合同价值3.8亿欧元,其中包括开发和建造两个LSTM卫星。LSTM的主要目的是提供全球高时空的日间和夜间土地表面温度测量值。用于映射,监视和预测地球自然资源的卫星数据分析有助于了解发生了什么,何时何地发生变化。尤其是,随着水短缺的增加和环境变化,该任务将响应欧洲农民的需求,使各个农场的农业生产更加可持续。专家将能够实时计算不同植物在不同地区需要多少不同的植物,以及这些植物需要灌溉的频率。土地表面温度测量和衍生的蒸散剂 - 植物生长时发出的水蒸气 - 是理解和响应气候变化,管理农业水资源并预测干旱的关键参数。热红外观察将支持一系列其他服务,以解决土地降解,土壤成分,火灾和火山活动,沿海和内陆水管理以及城市热岛问题。空中客车公司太空系统负责人Jean-Marc Nasr表示:“测量表面温度将有助于使农业生产在整个星球上更有效,从而使我们所有人受益。在迄今为止,所有哥白尼前哨卫星的空中客车都很高兴,ESA进一步委托我们为世界上最雄心勃勃的地球观察计划授予我们的下一代任务。该合同再次确认空中客车在空间技术的最前沿,以进行地球观察和世界的N°1出口商。” LSTM将从低地球,极性轨道运行,以绘制土地表面温度和蒸散速率,并以空前的现场尺度细节来绘制。它将能够以50 m的分辨率识别单个场的温度并每三天对地球进行图像。这是当前从空间中获取的细节的400倍。它的观察结果将覆盖较宽的温度范围。-20°C至 +30°C,精度很高(0.3°C)。
请与我们的支持团队联系以寻求您的问题。我们的工程师正在调查事件编号:18.9E89EF50.1738453940.D00C80D。可以通过此平台进行研究和新的汽车价值,交易价值,评级,规格和照片。我们代表16,000多名新车经销商,并代表他们在政府分支机构,制造商,媒体和公众面前代表他们。在安全气囊死亡后沃尔沃(Volvo)在爆炸充气器触发的召回中增加了大约195,000辆汽车后,了解了更多的通用沃尔沃召回较老的汽车。召回现在包括V70和…Sean Tucker,2021年10月22日,橙色书籍价值(abv)是一种算法定价引擎,建议二手车,自行车和踏板车的市场价值。它用于确定车辆的公平市场价格,帮助卖方设定公平价格,买家获得了巨大的价值。OBS服务是由Sandeep Aggarwal建立的,作为Droom的一部分。主要目标是提供公正的二手车价格指南,该指南通过专有技术和数据科学来确定二手车,自行车和踏板车的公平市场价格。为什么要出现?obv使用科学方法来实时计算二手车的当前市场价值。它提供了有关二手车定价的可靠数据,帮助买家做出明智的决定。无偏见的结果可帮助卖家为其车辆设定有竞争力的价格。它如何工作?要获取二手车的公平市场价格,请执行以下简单步骤:选择您要购买或出售车辆,然后选择类别(汽车,自行车或踏板车)。接下来,选择产品参数,例如Make,Model,Year和Trim。车辆和驱动公里数的状况也影响其价值。您将通过Obv获得二手车的确切估值。橙色书籍价值(abv)方法论是印度二手车,自行车和踏板车的高级算法和基于数据科学的评估工具。它为二手车提供了公平的定价指南,帮助买卖双方确定其产品的市场价值。对于银行和非银行金融公司(NBFC),明显通过提供有关当前二手车估值的实时数据来促进准确的贷款批准。与其他定价引擎不同,ABV使用专有数据科学方法和最新技术来根据导致价值贬值的因素来计算二手车,自行车和踏板车的正确定价。这些因素包括车辆的制造,型号,修剪,里程和物理状况,包括磨损,凹痕和重大维修工作。在明显的方法论中,维护良好的车辆得分较高,从而带来了更好的市场价值。估值工具根据以下参数分配评分:非常适合健康车辆,非常适合那些需要次要维修的人,适合需要中等维护的人,并且对于有重大问题的车辆来说是公平的。Orange Book Value的高级算法方法可确保准确的定价,使其成为买卖双方,卖方,银行,NBFC和保险公司的重要工具。
11。实验模型是用方向支撑30的氢爆炸。ioana tuhut ligia,英格。Andrada Matei,博士。 eng。 Full-Mihai Pascuscu,博士。 eng。 Daniel-Gheorore博士。 eng。 Adrian Simon-Marinica 语法语法受支持的促进的铁催化剂,助理。 证明。玛丽亚博士马尔可瓦,阿索。 证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。 证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。 火焰助手:理解对Mensans的燃烧,Assoc。 证明。 Castle Plant博士。 证明。大卫·莱昂(David Leon) 证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。 证明。 David Bolonio博士... 静液压动力传输系统此风力涡轮机,博士学位。英语 Dumirescu,博士英语 Chirita的Alexander-Polifron博士学习。 eng。 Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Andrada Matei,博士。eng。Full-Mihai Pascuscu,博士。eng。Daniel-Gheorore博士。 eng。 Adrian Simon-Marinica 语法语法受支持的促进的铁催化剂,助理。 证明。玛丽亚博士马尔可瓦,阿索。 证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。 证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。 火焰助手:理解对Mensans的燃烧,Assoc。 证明。 Castle Plant博士。 证明。大卫·莱昂(David Leon) 证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。 证明。 David Bolonio博士... 静液压动力传输系统此风力涡轮机,博士学位。英语 Dumirescu,博士英语 Chirita的Alexander-Polifron博士学习。 eng。 Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Daniel-Gheorore博士。eng。Adrian Simon-Marinica语法语法受支持的促进的铁催化剂,助理。证明。玛丽亚博士马尔可瓦,阿索。证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。火焰助手:理解对Mensans的燃烧,Assoc。证明。 Castle Plant博士。证明。大卫·莱昂(David Leon)证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。证明。 David Bolonio博士...静液压动力传输系统此风力涡轮机,博士学位。英语Dumirescu,博士英语Chirita的Alexander-Polifron博士学习。eng。Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。Maria Carla Carla Popescu 115。证明。 Beyoning博士,协会。证明。 Demidenko Galili博士,协会。证明。 Beryozkina Svelana博士,博士学位。证明。大卫·莱昂(David Leon)芳香族聚合物作为PT颗粒稳定剂的性质对芳族和多氨基底物的液相氢化中的活性和选择性的影响。Prof. Dr. Linda Nikoshvili, Ms. Elena Bakhvalova .......................................... 123 16.调查太阳能发电厂的并行操作的过渡过程和紧急干扰下的网格。Bohirjon Sharifov,Murodbek Safaraliev博士,Anvari Ghulomzoda博士,博士。 Mukhammadjon Odinabekov ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 烟花生命周期分析:环境影响和改善机会,协助。 David Bolonio博士,同事。 研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................Bohirjon Sharifov,Murodbek Safaraliev博士,Anvari Ghulomzoda博士,博士。Mukhammadjon Odinabekov ...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................烟花生命周期分析:环境影响和改善机会,协助。David Bolonio博士,同事。 研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................David Bolonio博士,同事。研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................研究员Roberto Paredes教授Isabel Amez博士,协助。Prof. Dr. Blanca Castells ............................................................................................... 139 18.使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................教授Krzysztof Kolodziejczyk,MSC Eng。Jedrzej Minda ..................................................... 149 19.优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................