图2:具有不同的钙钛矿吸收剂组成的建模吸收和装置响应。a)宽带隙(BPBBR 3,实线)的吸收(黑线)顶部子细胞和窄带隙底部子细胞(APBI 3,虚线,虚线)在TPD结构中,
图 2. 脉冲 EPR 回波检测场扫描 (EDFS) 的模拟取向依赖性。(A) 四方 Cu(II) 复合物的平行和垂直取向定义。(B) 模拟 Cu(II) EDFS 和组成超精细 m I 流形的取向依赖性,自旋哈密顿参数 g ∥ = 2.0912、g " = 2.0218、A ∥ = −500.1 MHz ( − 166.8 × 10 -4 cm -1 )、A " = −116.9 MHz ( − 39.0 × 10 -4 cm -1 )、ν = 9.7 GHz,取自实验 [Cu(mnt) 2 ] 2- CW EPR 光谱的拟合结果。 (C)模拟的 V(IV) EDFS 和自旋哈密顿参数 g ∥ = 1.9650、g " = 1.9863、A ∥ = −478.0 MHz ( − 159.4 × 10 -4 cm -1 )、A " = −167.8 MHz ( − 55.9 × 10 -4 cm -1 )、ν = 9.7 GHz 的方向依赖性,取自实验 VOPc CW EPR 光谱的拟合结果。黑色实线箭头表示 EDFS 中的纯平行方向,而红色实线箭头表示纯垂直方向。
图S1。 通过正弦脉冲类似阳极氧化的NaA – GIF制造。 a)代表性的全输入正弦电流密度曲线(黑色实线)和代表性的全输出正弦电压曲线(红色实线)。 初始部分中电压曲线向更高的电压值的轻微偏差与纳米孔的不均匀生长有关,从光滑的表面开始。 b) Magnified view (down left in blue dash line) of one period at the beginning of the electrochemical process with graphical definition of input anodization parameters: J max – current density amplitude, J average – current density average, T – anodization period and the output parameters in voltage profile: V average – average voltage during the anodization process, V max – output voltage amplitude. 当输入阳极氧化电流发生变化时,由于电流恢复过程缓慢而导致的输入电流密度曲线和电压轮廓之间存在时间延迟; c)放大了代表性输入和输出正弦电流密度和电压曲线(在黄色仪表线中向下),其图形定义是在制造电化学过程结束时参数的图形定义。图S1。通过正弦脉冲类似阳极氧化的NaA – GIF制造。a)代表性的全输入正弦电流密度曲线(黑色实线)和代表性的全输出正弦电压曲线(红色实线)。初始部分中电压曲线向更高的电压值的轻微偏差与纳米孔的不均匀生长有关,从光滑的表面开始。b) Magnified view (down left in blue dash line) of one period at the beginning of the electrochemical process with graphical definition of input anodization parameters: J max – current density amplitude, J average – current density average, T – anodization period and the output parameters in voltage profile: V average – average voltage during the anodization process, V max – output voltage amplitude.当输入阳极氧化电流发生变化时,由于电流恢复过程缓慢而导致的输入电流密度曲线和电压轮廓之间存在时间延迟; c)放大了代表性输入和输出正弦电流密度和电压曲线(在黄色仪表线中向下),其图形定义是在制造电化学过程结束时参数的图形定义。
图3:北部医学温度异常的时间。(a)观察到的(实心黑线)和各种强迫实验的多模型平均异常,大型火山喷发在时轴上由长滴答表示。(b)DAMIP多模型平均值(实线)以及六个模型(各种符号)的平均值,用于Aero(蓝色)和GHG(金)实验。
图 1 (A) 来自参考文献 [23] 的同心 transmon 量子比特设计及其等效电路图(插图)。两个超导岛(绿色和蓝色)由一个小的约瑟夫森结桥(橙色)分流。使用共面波导谐振器(红色)读出量子比特状态。该读出谐振器电感耦合到信号线(黑色)。(B)transmon 量子比特的状态由约瑟夫森结的正弦电位(黑色实线)决定。在相位基(Δφ)中求解,特征能量(实线)可以用谐振子(虚线,相应颜色)来近似,其简并性通过结上的电容充电能量的一阶校正来消除[24 – 26]。(C)布洛赫球面图。基态 j 0 i 和第一个激发态 j 1 i 用于定义量子比特的逻辑状态 j ψ i ,它是 j 0 i 和 j 1 i 的线性组合,具有各自的复振幅 α 和 β 。j ψ i 可以通过电压脉冲和门控操作进行操纵,并通过投影到指定的测量基础上进行读出
图1:超过1000个模拟数据集的纵向和生存数据的后验预测检查(PPC); (a) - (e):在atezolizumab治疗组中,纵向PPC通过病变位置分层,观察到的数据的中值(固体黑线)和淋巴(a),肺(B),肝(C),肝(C),Bladder(d)和其他(E)(E)的淋巴(A),蓝色,绿色,绿色,灰色,红色,红色和黄色的位置的预测间隔为95%。(f) - (j):化学疗法治疗手臂中通过病变位置分层的纵向PPC,随着时间的时间观察到数据的中值(固体黑线)和淋巴(F),肺(G),肝(H),肝(H),膀胱(I)和其他(蓝色(J)的位置(蓝色,绿色,灰色,灰色,红色,红色,红色)的预测间隔为95%。(k):两个治疗组中的生存PPC;化学疗法组(橙色实线)和atezolizumab臂(紫色实线)中观察到的数据中生存概率的Kaplan-Meier估计量和生存概率(有色区域)的预测间隔95%。
图 2:气压棒膨胀和变形的特性。a、气压棒结构的垂直切割示意图。通道的几何形状可以简化为两个无量纲参数:相对高度 Ψ = h/(h + 2e) 和通道密度 Φ = d/(d + d w ),其中 d 为通道宽度,d w 为壁宽,h 为通道高度,e 为覆盖膜厚度。b、当 Φ = 0.69 ± 0.05 时,目标平行和纵向应变对压力的依赖性,以及当 Φ = 0.5 ± 0.02 时,目标平行和纵向应变对压力的依赖性。实线对应没有任何拟合参数的模型(在我们的简化模型中,ε∥消失)。c、气压棒被编程为在加压时呈圆锥体。倾斜角记为 α。 d,对于不同参数的气压计,实验和理论(实线,无拟合参数)α 随施加压力的变化:红色菱形(Ψ = 0.78±0.05,Φ = 0.5,R = 50mm,H = 3.8±0.2mm);蓝色三角形(Ψ=0.74,Φ=0.5,R=40mm,H=5.4mm);紫色旗帜(Ψ=0.68,Φ=0.2,R=50mm,H =6mm);绿色方块(Ψ=0.6,Φ=0.5,R=40mm,H =6.7mm)。
图1甘蓝纳普斯的种子发育(cv。在各种压力条件下)。A.种子水含量(虚线)和种子发育过程中的干重(DW,实线)的演变。未成熟的种子。热时间在增长12(GDD)中给出。数据表示为每种处理的五种种子的三个生物学重复的平均值±SE。B.平均值(实线)在八个(C和WS)或四个(PB和PB + WS)中的土壤水电位(MBAR)的标准偏差(虚线)上,在20天的窗口上构成了干旱胁迫的应用。C。在不同条件下生长的梅氏芽孢杆菌植物的成熟叶片中RD20(QRT-PCR)的相对表达水平(每个生物学众多代表)。D.在WS应用开始时评估具有Clubroot症状的植物数量(4个众多植物)或农作物周期结束时(4个众议员30植物)。c,控制; WS,缺水; PB,P。Brassicae接种; PB + WS,P。Brassicae接种和水短缺;众议员,生物复制。
注意:面板 (a)、(b) 和 (c):显示了 100 次模拟中按时期 (横轴) 划分的价格 (垂直轴)。从下到上的线条分别表示每个时期价格分布的最小值 (细、黑色、实线)、25% 百分位数 (细、灰色、虚线)、中位数 (粗、黑色、实线)、75% 百分位数 (细、灰色、虚线) 和最大值 (细、黑色、实线)。结果针对静态伯特兰市场,其中有两家公司销售同质商品。结果针对公司 1。模型参数化如下。需求,如果 P ≤ 10,则 Q = 1,否则为零。边际成本 = 2。可行价格存在于一个网格中,该网格包含 100 个元素,间隔均匀,介于 0.1 和 10 之间(含 0.1 和 10)。A 对未来利润赋予零权重(未来折现为零)。更新中当前回报的权重由 α = 0 给出。1.初始条件为 i.i.d。对于每个公司的每个 W ( p ),从 U [10 , 20] 中抽取。在面板 (a) 中,仅显示每 10 个周期。在面板 (a) 中,5000 个周期后的最小值、25 百分位数、中位数、75 百分位数和最大值分别为:5.06、7.33、8.34、9.14 和 10。在面板 (b) 中,500 个周期后的最小值、25 百分位数、中位数、75 百分位数和最大值均等于 2.1291。在面板 (c) 中,500 个周期后的最小值、25 百分位数、中位数、75 百分位数和最大值分别为:2.0282、2.129、2.1291、2.23 和 3.84。面板 (d):在从 100 次运行中选择的单个模拟中,显示公司 1 的价格(垂直轴)按时期(水平轴)划分,以生成面板 (b)。空心浅灰色圆圈表示(选定的)W (p) 向下更新的价格。实心粗黑色圆圈表示(选定的)W (p) 向上更新的价格。