摘要:聚合物的许多理想特征源于其重复单元的聚合方法和结构特征,这些方法通常是由于可加工性成本而导致聚合物的性能。虽然线性替代方案很受欢迎,但通常证明由骨干上的循环重复单元组成的聚合物通常显示出较高的光学透明度,较低的吸收和较高的玻璃过渡温度。这些特定的包括用取代的蓝环或芳族环或两者兼而有之的聚合物。在本评论文章中,我们强调了两个有用的环形聚合物基团,每个胞核丁基(PFCB)芳基聚合物和基于 - 二烯烯丙烯 - (ODA)基于基于的二烯丙烯 - (ODA)基于良好的热稳定性,既表现出杰出的热稳定性,化学抗性稳定性,化学耐药性,机械完整性和提高的加工能力。讨论了不同的合成途径(重点放在环形聚合中)和这些聚合物的性能,然后在广泛的方面进行了相关应用。
电压并不是线性关系。实际上,距离受自身信噪比、菲涅尔透镜成像距离、运动体温度、环境温湿度、电磁干扰等影响。因此输出不能用单一指标来评价,实际应用中请以调节结果为准。SENS Pin电压越小,检测距离越远。传感器有32级检测距离可供选择,最短可达厘米级。实际应用中,SENS通过分压电阻调节。
电子邮件:rajeshupadhyay1@gmail.com摘要:数字信号处理(DSP)是一项至关重要的技术,它弥合了数字时代的理论原理和实际应用之间的差距。本文探讨了DSP的核心组成部分,并根据数学概念(例如傅立叶分析,离散时间信号和Nyquist定理)强调其理论基础。它进一步研究了DSP的实际应用,展示了其在音频处理,图像操纵,电信,生物医学诊断等中的广泛使用。本文还概述了DSP的挑战和未来方向,包括它与机器学习,量子信号处理以及有效硬件解决方案的开发。dsp在生物信号处理,数据隐私和可持续性等新兴领域的潜力,反映了这项技术的不断发展的性质。总而言之,DSP不仅是一种技术,而且是一种动态力量,它通过提高生活质量,推进科学并应对全球挑战而不断重塑我们的世界。关键字:数字信号处理,傅立叶分析,实际应用,挑战,未来方向