我们描述了基于Rotornet和Opera Architectures的构建经验并部署了需求忽略的光学切换网络。我们详细介绍了128端口光转子开关的设计,制造,部署和端到端操作以及支持NIC硬件和主机软件。使用此原型,我们以实用的相关性评估与商品硬件和软件的产量,同步和互操作性。我们在操作性rotornet中提供了Linux TCP吞吐量和宿主到宿主潜伏期的第一个现实测量值,比商品数据包切换硬件的速度快于99%的ping时间,实现了98%的链接率。在此过程中,我们通过链接级别的辍学来发现意外的挑战,并设计了一种新颖而灵活的方法来解决它们。我们的部署经验证明了我们实施方法的可行性,并确定了未来探索的机会。
人工智能 (AI) 在汽车和金融等领域或人力资源管理 (HRM) 等业务部门有许多用途。本研究对德国中小型企业人力资源管理人员进行了一项调查,调查内容是 AI 对他们自己和其他公司的预期影响。调查发现,存在不切实际的乐观迹象,即认为负面影响更有可能发生在他人身上而不是自己身上。AI 将发挥越来越重要的作用,其中降低成本和提高效率是最高动机,而缺乏 AI 专家是最高抑制因素。参与者认为 AI 将减少其他公司的员工数量,而让他们自己的员工数量增加。他们预计 AI 将接管其他公司的更多任务,并相信 AI 将对其他公司的人力资源管理产生更大的影响,尤其是在行政处理方面。未来的研究应包括对其他业务部门的(重复)调查。
人工智能 (AI) 在汽车和金融等领域或人力资源管理 (HRM) 等业务部门中有许多用途。本研究对德国中小型企业人力资源管理人员进行了一项调查,调查内容是 AI 对他们自己和其他公司的预期影响。调查发现,存在不切实际的乐观迹象,即认为负面影响更有可能发生在他人身上而不是自己身上。AI 将发挥越来越重要的作用,其中降低成本和提高效率是最高动机,而缺乏 AI 专家是最大的阻碍因素。参与者认为 AI 将减少其他公司的员工数量,同时让他们自己的员工数量增加。他们预计 AI 将接管其他公司的更多任务,并相信 AI 将对其他公司的人力资源管理产生更大的影响,尤其是在行政处理方面。未来的研究应包括对其他业务部门的(重复)调查。
由于响应特性相似,使用单个电阻半导体传感器监测和分类不同气体具有挑战性。分离的传感器阵列可用作电子鼻,但这种阵列结构庞大,制造工艺复杂。在此,我们轻松制造了一个基于边缘生长的 SnO 2 纳米线的气体传感器阵列,用于实时监测和分类多种气体。该阵列由四个传感器组成,设计在玻璃基板上。SnO 2 纳米线从电极边缘在芯片上生长,相互接触,并充当传感元件。这种方法比后合成技术更有优势,因为 SnO 2 纳米线直接从电极边缘生长,而不是在表面上生长。因此,通过在高生长温度下将 Sn 与 Pt 合金化可以避免对电极造成损坏。进一步检查了传感器阵列对不同气体的传感特性,包括甲醇、异丙醇、乙醇、氨、硫化氢和氢气。雷达图用于改善对不同气体的选择性检测并实现有效分类。© 2020 作者。由 Elsevier BV 代表河内越南国立大学提供出版服务。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
县投资和特别基金委员会的报告表明,县欠养老金领取者超过800亿先令,并应计入利息。内阁njuguna ndung'u将不得不宪报任务组,以便为其提供法律支持和资金来进行询问。在其询问中,由参议员戈弗雷·奥索西(Godfrey Osotsi)主持的委员会确定,县政府对未偿还养老金债务的数据与各个养老金计划提供的数据之间存在很大差异,这些养老金债务是地方当局是地方当局Provident Provind Fund(Lapfund)(Lapfund)和咨询资金基金(CPF)(CPF),需要进一步分析和对重点。由县资产和负债委员会收集的数据表明,县政府继承了总计99.8亿先令的债务,截至2013年3月,已解决的地方当局的养老金扣除额。这些数字是从175个已停产的地方作者的索引中得出的。这包括欠LapTrust的50.8亿先令,欠1008亿先令
简介:我相信,从多个角度理解问题可以找到最大的真理。我想了解周围的世界,我选择回答问题的两种语言是艺术和科学。对我来说,艺术的吸引力在于它如何完美地传达强烈的情感,而物理学令人难以置信,因为它可以简单有效地描述一个系统。小时候,我有很多关于雪花的小书,我对它们的对称性很着迷,我仔细研究了它们的生长模式和晶体结构。后来,在高中和大学期间,我被覆盖地球的各种晶体和地质构造所吸引。当时我没有足够的自我意识来意识到这一点,但很快就会明白,材料物理学的研究将完美地表达我对地质学、数学、艺术的兴趣,以及对理解我们世界的特殊性的陶醉。我现在准备在加州大学圣巴巴拉分校开始我的物理学博士学位,并开始我的量子材料世界的科学探索。凭借这一点以及我在美术方面的天赋,我将努力为科学问题带来独特的见解,并向公众和科学界传达艺术和我的研究的价值。 智力价值/研究经验:作为一名年轻的物理学家,我仍在探索如何最好地结合我对艺术和科学的兴趣,因此我很高兴尝试我的第一个机会:在桑迪亚国家实验室的应用光学和等离子体科学小组实习,在那里我沉浸在低温等离子体物理学的世界中。在这里,我学会了如何分析等离子体的激发光谱,并使用粒子内方法与直接模拟蒙特卡罗 (PIC-DSMC) 耦合来直接模拟带电粒子的多体系统。三年来,我与他们一起解决了各种问题,从在实验室中创建电场传感器到设计减速场能量分析仪。我最广泛的项目将等离子体电子在氮中散射的统计分布的 PIC-DSMC 模拟与玻尔兹曼方程的近似解进行了比较。我最广泛的项目将我们对等离子体离子统计分布的 DSMC-PIC 模拟与玻尔兹曼方程得出的数值计算进行了比较。我能够确定这两种技术最一致的能量状态,并确定对 PIC-DSMC 代码的潜在修正,以提高两种方法之间的一致性。作为我第一次以心理能力进行自由探索,我在桑迪亚度过的时光收获颇丰,因为我能够得出关于模拟数据中有趣怪癖的结论并提出自己的主张。我还被安排在一个环境中,在那里我对等离子体物理学这一主题知之甚少,但我被期望快速学习,而我确实学得很快。我获得了宝贵的经验,学会了审查研究论文和教科书,找出知识上的差距,然后找人和其他资源来帮助我弥补信息上的不足。每天我都兴奋地从床上跳起来去上班;我简直不敢相信我得到的报酬是学习我想要的一切,我知道这是适合我的工作。我还从我在桑迪亚的工作中发现,我最感兴趣的是等离子体中特定能态产生的光谱特性。我喜欢美术中为我的眼睛提供信息的光线可以深入了解现实的本质,我觉得通过进一步研究这个主题,我的艺术部分也有可能得到满足。我在桑迪亚的自我发现之路促使我沉浸在原子和粒子物理课程中;我想更好地理解这门科学,它似乎既能满足我对艺术和科学的兴趣,又能给我带来个人满足感。在这段时间里,我还沉浸在地球物理课程中,我开始意识到,如果我仔细观察,就有可能将我所学的一切结合起来。我在上地震力学课时才真正领悟到这一点——我们当时正在学习颗粒/粒子尺寸对固体裂纹扩展的影响。在课堂上,教授指出,非常大的裂缝
在这里,我们研究了掺杂(X = 0、0.05和0.1)氧化二聚体(X = 0、0.05和0.1)的结构和磁性能的影响,该氧化物(NDFEO₃)纳米颗粒通过慢速溶液燃烧技术合成。X-射线衍射(XRD)分析证实了带有空间群PBNM的原晶晶体结构(JCPDS卡No。25 - 1149),并且随着GD掺杂浓度的增加,结晶石的尺寸从52 nm降至32 nm。场发射扫描电子显微镜(FESEM)揭示了具有一致粒径的良好组织和团聚的纳米颗粒。使用squid磁力计对所有样品的铁磁特征进行了磁性测量,随着GD掺杂浓度的增加,磁矩的增加。滞后曲线显示出雷神磁化的增加,并且凝固性从0.7 t增加到0.4 t。这些发现表明,GD掺杂的NDFEO纳米颗粒具有增强的磁矩和降低的凝聚力,降低了渗透率,对纺纱应用的潜力持有。