摘要 — 随着 5G 蜂窝系统在全球范围内的积极部署,研究界已开始探索下一代即 6G 的新技术进步。人们普遍认为,6G 将建立在无处不在的 AI 的新愿景之上,这是一种超灵活的架构,将类似人类的智能带入网络系统的各个方面。尽管前景广阔,但预计在基于 AI 的无处不在的 6G 中会出现一些新挑战。尽管已经进行了许多将 AI 应用于无线网络的尝试,但这些尝试尚未在实际系统中大规模实施。关键挑战之一是难以在大量异构设备之间实现分布式 AI。联邦学习 (FL) 是一种新兴的分布式 AI 解决方案,可在异构和潜在的大规模网络中实现数据驱动的 AI 解决方案。尽管它仍处于早期发展阶段,但受 FL 启发的架构已被认为是实现 6G 中无处不在的 AI 最有希望的解决方案之一。在本文中,我们确定了推动 6G 与 AI 融合的需求。我们提出了一种基于 FL 的网络架构,并讨论了其解决 6G 中预期的一些新挑战的潜力。我们还讨论了支持 FL 的 6G 的未来趋势和关键研究问题。
摘要 - 在合作边缘节点中流动的室内化任务已成为提高资源利用并改善边缘计算中用户的经验质量(QOE)的有前途的解决方案。但是,当前的分散方法(例如启发式方法和基于游戏理论的方法)可以优化贪婪或依赖于刚性假设,无法适应动态边缘环境。现有的基于DRL的方法在模拟中训练该模型,然后将其应用于实用系统。由于实际系统与模拟环境之间的差异,这些方法的性能可能很差。其他直接训练模型和部署模型的方法将面临一个冷启动的问题,这将在模型收敛之前减少用户的QOE。本文提出了一本名为(o2o-drl)的drl-on-Online DRL小说。它使用启发式任务日志来启动lim的DRL模型。但是,频道和在线数据具有不同的分布,因此,使用局部方法进行在线调整会破坏所学的局部策略。为了避免此问题,我们使用派利DRL来调整模型并防止价值高估。我们在模拟和基于Kubernetes的测试台中使用其他方法评估O2O-DRL。性能结果表明,O2O-DRL胜过其他方法,并解决了冷门问题。
在过去的几十年里,人工智能 (AI) 技术经历了飞速发展,改变了每个人的日常生活,并深刻改变了人类社会的进程。开发人工智能的初衷是造福人类,减少劳动,增加日常便利,促进社会公益。然而,最近的研究和人工智能应用表明,人工智能可能会对人类造成无意的伤害,例如,在安全关键场景中做出不可靠的决策,或者无意中歧视一个或多个群体,破坏公平。因此,值得信赖的人工智能最近引起了越来越多的关注,人们需要避免人工智能可能给人类带来的不利影响,以便人们能够完全信任人工智能技术并与人工智能技术和谐相处。近年来,人们对值得信赖的人工智能进行了大量研究。在本次调查中,我们从计算角度对可信人工智能进行了全面评估,以帮助读者了解实现可信人工智能的最新技术。可信人工智能是一个庞大而复杂的课题,涉及各个维度。在这项工作中,我们重点关注实现可信人工智能的六个最关键维度:(i)安全性和稳健性,(ii)非歧视性和公平性,(iii)可解释性,(iv)隐私,(v)问责制和可审计性,以及(vi)环境福祉。对于每个维度,我们根据分类法回顾最近的相关技术,并总结它们在实际系统中的应用。我们还讨论了不同维度之间一致和冲突的相互作用,并讨论了可信人工智能未来需要研究的潜在方面。
我们提出了新方法,用于精确合成具有高成功概率和门保真度的单量子比特幺正,同时考虑了时间箱和频率箱编码。所提出的方案可通过光谱线性光学量子计算 (S-LOQC) 平台进行实验,该平台由电光相位调制器和相位可编程滤波器(脉冲整形器)组成。我们评估了两种编码中任意门生成的两种最简单的 3 组分配置的保真度和概率性能,并使用单音射频 (RF) 驱动 EOM,为时间箱编码中任意单量子比特幺正的合成提供了精确的解析解。我们进一步研究了使用紧凑实验装置在多个量子比特上并行化任意单量子比特门,包括光谱和时间编码。我们系统地评估和讨论了 RF 带宽(决定驱动调制器的音调数量)以及不同目标门的编码选择的影响。此外,我们还量化了在实际系统中驱动 RF 音调时,可以并行合成的高保真 Hadamard 门的数量,且所需资源最少且不断增加。我们的分析将光谱 S-LOQC 定位为一个有前途的平台,可进行大规模并行单量子位操作,并可能应用于量子计量和量子断层扫描。
摘要。数字签名是各种协议中提供完整性和真实性的基本构建块。量子计算的发展引发了人们对传统签名方案所提供的安全保障的担忧。CRYSTALS-Dilithium 是一种基于格密码学的高效后量子数字签名方案,已被美国国家标准与技术研究所选为标准化的主要算法。在这项工作中,我们提出了 Dilithium 的高吞吐量 GPU 实现。对于单个操作,我们采用一系列计算和内存优化来克服顺序约束、减少内存使用和 IO 延迟、解决银行冲突并缓解管道停顿。这为每个操作带来了高且平衡的计算吞吐量和内存吞吐量。在并发任务处理方面,我们利用任务级批处理来充分利用并行性并实现内存池机制以实现快速内存访问。我们提出了一种动态任务调度机制来提高多处理器占用率并显着缩短执行时间。此外,我们采用异步计算并启动多个流来隐藏数据传输延迟,并最大限度地发挥 CPU 和 GPU 的计算能力。在所有三个安全级别中,我们的 GPU 实现在商用和服务器级 GPU 上实现了超过 160 倍的签名加速和超过 80 倍的验证加速。这为每个任务实现了微秒级的摊销执行时间,提供了一种适用于实际系统中各种应用的高吞吐量和抗量子解决方案。
摘要 - 我们在此工作边缘计算(EC)中考虑在多租户环境中:资源所有者,即网络运营商(NO),虚拟资源使资源虚拟化,并允许第三方服务提供商(SPS-租户)运行他们的服务,这可以多样化,并且具有异质要求。由于确保保证,NO无法观察到已加密的SPS的性质。这使资源分配决策具有挑战性,因为它们必须仅基于观察到的监视信息进行。我们专注于一个特定资源,即缓存空间,部署在某个边缘节点中,例如一个基站。我们研究了关于如何在几个SP中分区缓存的决定,以最大程度地减少上游流量。我们的目标是使用纯粹的数据驱动的,无模型的增强学习(RL)优化缓存分配。与RL的大多数应用程序不同,RL的大多数应用程序在模拟器上学习了决策策略,我们认为没有以前的知识可用于构建这种模拟器。因此,我们以在线方式应用RL,即通过直接扰动实际系统并监视其性能的变化来学习策略。由于扰动会产生虚假的流动,因此我们也限制了它们。我们在模拟中表明,我们的方法迅速融合了理论最佳,我们研究了它的公平性,对几种情况特征的敏感性,并将其与最先进的方法进行比较。我们的代码复制结果可作为开源。1
为了确保在实际系统中加固学习的有用性(RL),确保它们对噪声和对抗性攻击至关重要。在对抗RL中,外部攻击者有能力操纵受害者与环境的互动。我们研究了整个在线操纵攻击,其中包括(i)国家攻击,(ii)观察攻击(这是对状态的概括),(iii)行动攻击和(iv)奖励攻击。我们表明了攻击者设计的隐形攻击问题,该攻击最大化了其自身的预期奖励,通常与最小化受害者的价值相对应,这是由马尔可夫·德克尼(Markov DeSision)过程(MDP)捕获的,我们称之为元MDP,因为它不是真实的环境,而是通过攻击互动所带来的更高级别的环境。我们表明,攻击者可以通过在多项式时间进行计划或使用Standard RL技术进行多项式样本复杂性来得出最佳攻击。我们认为,可以将受害者的最佳防御政策计算为对Stochastic Stackelberg游戏的解决方案,可以将其进一步简化为基于部分的基于转弯的随机游戏(POTBSG)。攻击者和受害者都不会从各自的最佳政策中受益,因此这种解决方案确实很健壮。尽管防御问题是NP-HARD,但我们表明在许多情况下,可以在多项式时间(样本复杂性)中计算(学习)最佳的马尔可夫防御。
前言 几年前发生了两起涉及 HVDC 晶闸管阀的重大火灾事件,一起发生在 1989 年 5 月,地点是巴西 Itaipu ± 600 kV 6300 MW 双极 HVDC 系统的 Foz do Iguaçu 换流站,另一起发生在 1990 年 6 月,地点是印度 Rihand - Delhi ± 500 kV 1500 MW 双极 HVDC 系统的 Rihand 换流站。CIGRÉ 第 14 研究委员会:直流链路和电力电子设备,应其成员在 1991 年 9 月于印度新德里举行的研究委员会会议上的要求,被分配了研究“HVDC 阀和阀厅的火灾问题”的任务,并就该主题向 CIGRÉ 工作组 14.01:“HVDC 和 SVC 的阀门”提交报告。 1992 年 5 月成立了 14.01.04 特别工作组:“高压直流阀门和阀厅的火灾问题”。1993 年 10 月 30 日,美国加利福尼亚州 ± 500 kV 1100 MW 太平洋高压直流联络线扩建计划的西尔玛换流站(东)发生了第三次重大高压直流晶闸管阀门火灾。本报告是特别工作组对火灾问题进行审查的结果。报告提供:。调查阀门和阀厅火灾的可能原因。。通过向用户提供有关实际系统和实践的信息来协助用户。。为用户和供应商提供的指南,特别是在规范、工程和施工方面。。各种火灾探测和保护系统的比较信息。。有关火灾报警和火灾控制系统的信息。。有关
我们开发了一种干涉技术,用于对光学晶格中非平衡超冷玻色子的场正交算子进行时间分辨测量。该技术利用磁性原子的内部状态结构来创建两个具有不同自旋状态和晶格位置的原子子系统。费什巴赫共振会关闭一个自旋子系统中的原子间相互作用,使其成为一个特征明确的参考状态,而另一个子系统中的原子则会在可变的保持时间内经历非平衡动力学。通过第二次光束分裂操作干涉子系统,通过检测相对自旋布居,可以对相互作用的原子进行时间分辨的正交测量。该技术可以为各种哈密顿量和晶格几何形状(例如立方、蜂窝、超晶格)提供正交测量,包括具有隧穿、使用人工规范场的自旋轨道耦合和高频带效应的系统。通过分析隧穿可忽略的深晶格的特殊情况,我们获得了正交可观测量及其涨落的时间演化。作为第二个应用,我们表明干涉仪可用于测量原子间相互作用强度,超海森堡标度为 ¯ n − 3 / 2(平均每个晶格点的原子数),标准量子极限标度为 M − 1 / 2(晶格点数)。在我们的分析中,我们要求 M ≫ 1,并且对于实际系统,¯ n 很小,因此总原子数 N = ¯ nM 的缩放低于海森堡极限;尽管如此,在此系统中应该可以进行基于相互作用的量子计量学的缩放行为测试。
ORCID ID:Kyle A. Alvarado https://orcid.org/0000-0001-6489-2237 Juan B. García Martínez https://orcid.org/0000-0002-8761-7470 David Denkenberger http://orcid.org/0000-0002-6773-6405 摘要:将食物发射到太空的成本非常高。另一种方法是在任务期间使用人工光合作用、温室、非生物食品合成、电细菌和氢氧化细菌 (HOB) 等方法制作食物。本研究比较了预包装食品、人工光微藻和 HOB。每种替代方案的主要因素是其相对质量,因为将有效载荷发射到太空需要高昂的燃料成本。因此,使用美国国家航空航天局开发的等效系统质量 (ESM) 技术对替代方案进行了评估。分析了三项为期 3 年、载有 5 名机组人员的不同任务,包括国际空间站 (ISS)、月球和火星。ESM 的组成部分包括表观质量、散热、功率和加压体积。所有系统选择的电源都是核能。经计算,太空电力与生物质的效率分别为 HOB 和微藻的 18% 和 4.0%。这项研究表明,种植 HOB 是最便宜的替代方案。HOB 的 ESM 平均比预包装食品和微藻低 2.8 倍和 5.5 倍。这项替代食品研究还涉及在全球农业灾难期间为地球提供食物。HOB 的好处包括回收包括 CO 2 在内的废物并产生 O 2 。实际系统将涉及多种食物来源。