摘要 — 储能系统 (ESS) 可以增强电网的灵活性,其运营商可以从各种收入来源中受益以收回投资。本研究旨在估算欧洲市场提供频率控制储备 (FCR) 或主要储备的预期收入。引入了一个参考模型,其中 FCR 激活由实际频率测量决定(模型 1)。由于这些测量结果可能无法系统地获得,本文提出了两个额外的离线方法模型,使 ESS 运营商无需实际频率数据即可确定瞄准 FCR 市场的经济可行性。模型 2 是基于与电池额定功率(即储备容量)有关的激活能量恒定系数的传统公式的改进版本。模型 3 是一种新的简化模型,基于取决于系统运营商的总激活储备的可变激活系数。考虑到 2021 年法国市场,通过与六个月的精确公式进行比较,评估了所提出模型的有效性。结果表明,在激活能量较高(高频增益)的情况下,采用模型 2 是更好的选择,与模型 1 相比,误差为 3%。然而,在相反的情况下(低频增益),模型 3 更适合使用,误差为 2%。
图解扩展是处理相关电子系统的中心工具。在热平衡下,它们最自然地定义了Matsubara形式主义。但是,从Matsubara计算中提取任何动态响应函数最终需要从虚构到实频域到实频域的错误分析延续。最近提出了[物理学。修订版b 99,035120(2019)],可以使用符号代数算法分析进行任何相互作用膨胀图的内部Matsubara总结。总结的结果是复杂频率而不是Matsubara频率的分析函数。在这里,我们应用了此原理并开发了一种示意的蒙特卡洛技术,该技术直接在实际频率轴上产生。我们介绍了在非平凡参数方面的掺杂32x32环状方晶格哈伯德模型的自我能量σ(ω)的结果,其中pseudogap的特征似乎靠近antinode。我们讨论了在实频轴上的扰动序列的行为,尤其表明,在使用截短的扰动系列上使用最大熵方法时,必须非常小心。在分析延续很困难的情况下,我们的方法对将来的应用具有巨大的希望,而中阶扰动理论可能会融合结果。
I. 引言 在许多 VLSI 系统中,二进制计数器是基本构建块。𝑛 位二进制计数器由一系列 𝑛 触发器组成,其计数值可以是 0 到(2 n −1)[1]。在为各种应用设计高速、低功耗数字系统时,低功耗快速二进制计数器设计是关注的基本点。调度中进程分配的计数时间可用作时钟分频器(用于片上处理器,因为有时处理器的工作频率低于处理器的实际频率)。二进制计数器广泛用于单斜率或双斜率模数转换器 (ADC)。在这种情况下,在每个时钟脉冲上递增的同步计数器对应于上升和下降斜坡发生器采样的模拟信号,其值进一步输入数模转换器 (DAC) 以创建其模拟值 [2-5]。在数字锁相环 (DPLL) 中,时间数字转换器 (TDC) 用作相位检测器,其中 TDC 由加减计数器组成。它用于捕获分数压控振荡器 (VCO) 的信息,以提高频率检测的准确性 [6-13]。计数器模块用于设计电子产品代码 (EPC) Gen-2 标准中 LFSR 的变量,用于各种安全问题中的超高频或射频识别 [14]。高速二进制计数器用于计数光子计数相机中的光子数 [15]。在现代自动化技术中,某些事件非常快,无法在程序周期中检测到。为了检测这种高速事件,引入了一个新的技术术语,即高速计数器 (HSC)。在每转只有一个或几个脉冲的情况下,HSC 在确定旋转运动速度时非常有用。这种 HSC 的一部分适用于自动化、过程控制、