从 2019 年开始,航空公司飞行员将被要求在飞行模拟器中进行完全失速恢复训练。从历史上看,训练模拟器不需要在其正常飞行包线之外的条件下提供训练。通常需要实施失速后飞机模型来模拟失速点后的飞机响应。此外,运动提示需要充分代表这种响应,以确保在模拟器训练中学习的技能可直接用于实际飞行。本文概述了 NASA 艾姆斯研究中心进行的六个模拟器实验,旨在开发商业运输模拟器失速恢复训练的运动提示策略。其中一项实验验证了 D 级认证全飞行模拟器上失速恢复训练的增强运动提示策略。这项研究表明,增强的运动会导致失速机动中的最大滚转角降低、恢复中的最小载荷系数降低、失速恢复中的二次摇杆数量减少以及恢复中的最大空速降低。这些结果表明,对传统商业运输模拟器的运动逻辑进行相对较小的改进可以显著提高飞行员在模拟失速恢复中的表现,并可能改善失速恢复训练。
触摸技术有望取代客机驾驶舱中现有的飞行员系统界面。使用触摸屏为飞行员和制造商提供了许多优势。然而,它也给航空安全带来了重大潜在风险。在本文中,我们探索了未来飞行员触摸式飞行控制面板的设计空间。我们尝试设计在不稳定条件下更具物理性和鲁棒性的手势,并且需要更少的视觉焦点,这些手势基于利用空间和本体感受技能的方向性手势和布局。我们观察了在湍流条件下实际飞行过程中控制面板的使用情况。这让我们探索了触摸式交互技术在使用环境恶化的情况下的局限性,并探索了有形和具体交互中的有形属性如何帮助设计这些手势。这也让我们更好地理解了触摸式交互和有形交互之间模糊的边界,并通过迭代构建明确的设计空间来反思退化环境中的交互设计原则。© 2019 作者。由 Elsevier B.V. 出版。同行评审由第 8 届国际航空运输会议 – INAIR 2019、全球航空趋势科学委员会负责 关键词:触摸式交互;基于手势的交互;有形交互;有形交互设计方法;有形框架;退化环境;航空学
战斗机就是这样一个例子,为了完成战斗任务,飞行员在体力(由于 G 机动)和认知(处理多个传感器、感知、处理和多任务,包括通信和操作武器)方面都承受着巨大的负担。需要分析这种认知需求,以了解战斗机飞行员的工作负荷。本研究的目的是分析在不同飞行负荷条件下,在逼真的高保真飞行模拟器环境中战斗机飞行员的动态工作负荷。各种工作负荷条件包括 (a) 正常能见度、(b) 低能见度、(c) 正常能见度和次要任务,以及 (d) 低能见度和次要任务。虽然飞行员的飞行表现得分不错,但生理指标如心率变异性 (HRV) 特征和主观评估 (NASA-TLX) 成分在任务之间具有统计学意义 (p<0.05)。在所有任务负载条件下,HRV 特征(例如 SD2、SDNN、VLF 和总功率)都很重要。LFnu 和 HFnu 特征能够区分低能见度和次要认知任务的影响,在本研究中,次要认知任务被强加为增加的任务。该结果有助于了解飞行员在每个飞行阶段的任务和表现以及他们在动态工作量期间的认知需求,这可以在模拟器和实际飞行条件下以最佳方式协助飞行员的训练计划。
从 2019 年开始,航空公司飞行员将被要求在飞行模拟器上进行全失速恢复训练。从历史上看,训练模拟器不需要在其正常飞行包线之外的条件下提供训练。通常需要实施失速后飞机模型来模拟失速点后的飞机响应。此外,运动提示需要充分代表这种响应,以确保在模拟器训练中学习的技能可直接用于实际飞行。本文概述了 NASA 艾姆斯研究中心进行的六个模拟器实验,旨在开发商业运输模拟器中失速恢复训练的运动提示策略。其中一项实验验证了 D 级认证全飞行模拟器上失速恢复训练的增强运动提示策略。这项研究表明,增强的运动导致失速机动中的最大滚转角更低,恢复中的最小载荷系数更低,失速恢复中的二次摇杆数量更少,恢复中的最大空速更低。这些结果表明,对传统商用运输模拟器的运动逻辑进行相对较小的改进可以显著提高飞行员在模拟失速恢复中的表现,并可能改善失速恢复训练。
摘要 —人们对在自然环境中实施监测认知表现的工具的兴趣日益浓厚。最近的技术进步使得新一代脑成像系统(如干电极脑电图 (EEG) 和功能性近红外光谱 (fNIRS))的开发成为可能,以研究实验室外各种人类任务中的皮质活动。这些高度便携的脑成像设备为实现被动脑机接口 (pBCI) 和神经自适应技术提供了有趣的前景。我们开发了一种基于 fNIRS-EEG 的 pBCI,使用参与相关特征(EEG 参与率和基于小波相干性 fNIRS 的指标)来监测认知疲劳。众所周知,这种心理状态会损害认知表现并危及飞行安全。在这项初步研究中,四名参与者被要求在飞行模拟器和实际轻型飞机中执行四种相同的交通模式以及次要听觉任务。前两种交通模式被视为低认知疲劳类别,而后两种交通模式被视为高认知疲劳类别。正如预期的那样,飞行员在实验的第二部分中错过的听觉目标比第一部分中更多。当结合两种模式时,飞行模拟器条件下的分类准确率达到 87.2%,实际飞行条件下的分类准确率达到 87.6%。本研究表明,fNIRS 和基于 EEG 的 pBCI c
遥感飞行平台分为卫星遥感和航空遥感,过去的航空遥感平台主要是有人机。20世纪90年代,随着电子技术的飞速发展,小型无人机在遥控、续航时间、飞行品质等方面有了明显的突破,成为近来兴起的新型遥感手段,并在遥感界被普遍认为具有良好的发展前景。与人机相比,无人机的优势主要表现在:一是机动性极高,所有设备加起来也就100多公斤,在机动速度、机动范围、机动条件等方面,是任何飞机都无法比拟的;二是环境适应能力强,不需要专门的起降场地,飞到哪里对气象条件的要求很低,优越的低空性能使得云中作业变得轻而易举,从而大大提高工作效率;三是经济性极佳,飞机购买价格便宜,一般公司都能负担得起,使用成本低,而且不需要有人值守,用户的安全压力大大减轻。从飞行器的性能上看,无人机与人机的一个重要区别在于,无人机在视距内飞行,完全由自动驾驶仪按预设程序飞行,无法根据实际飞行情况进行无人干预,体积小,可装载空间和重量十分有限,只能装载小型普通传感器。第三,无人机飞行时受气流扰动而引起飞行状态偏差,主要靠飞机自身的飞行稳定性来恢复,因此存在明显的速度慢。以上特点直接影响航拍质量,用无人机航拍时,往往出现图像质量不高、重叠误差大、漏拍等现象。
摘要 论文题目:改进基于模拟的培训以更好地服务于海事界:航空和海事领域的比较研究。学位:理学硕士 航运业本质上是最国际化的行业之一。此外,它仍然是一个具有潜在危险的高风险行业。经过几个世纪的发展,该行业在技术、经济和科学方面已经达到了相当好的实践。然而,有一件事没有改变,那就是由人为因素引起的海上事故的比例,无论船舶结构和操作应用的技术水平如何。为了解决这个问题,海事教育和培训(MET)被认为是一种具有潜在能力来拯救更多海上生命的主动方法。MET 部分中最强大的工具之一是基于模拟的培训,它是提高海员能力的有效工具。然而,基于模拟的训练在海事领域的应用实施不佳,无法发挥其潜在价值。同时,该工具在航空领域的使用被认为是不可或缺的,因为它是实际飞行训练的替代品。它在航空领域被广泛使用。本论文对航空和海事领域模拟器培训的使用进行了文献综述和比较分析。目的是找出模拟在海事领域使用的局限性,并找出可以学习的航空领域最佳实践以改进实践。在分析从文献中收集的关于这些领域基于模拟的训练使用情况的数据后,得出了一个重要结论。讨论了局限性和可能的特点。希望本研究结果能有助于未来模拟训练的实践改进,从而对海事界的安全实践产生积极影响。关键词:模拟训练、模拟评估、海事教育与培训、海事政策
进行了一项研究,研究了无人机螺旋桨的设计,制造和绕过。使用计算设备发现不同螺旋桨设计的精简质量,该软件被利用。制造了一种具有这种机制的迷你夏令螺旋桨,并且进行了试验证实了它们的成功。虽然多材料方法会以强度减轻轻度,但耐用性将是该过程中最弱的联系。具有重量和简化的故障,脆弱性始终是一个因素。此评估应有助于对当前的无人机推进系统进行大修,例如耐用性和效率,以提高性能并增加持久性。通过使用PLA,ABS和PGA打印材料打印零件,使用FSI系统使用风扇和压力因素来研究气流模式。空气是在材料上引导的,模拟了实际飞行,以评估材料的强度。无人机DJI Mini 3 Pro进行了速度和最大高度的实验测试。Mini 3 Pro中风扇的高度可能会更高,最大速度为37.3 km/h,在Mini 2 Pro中,关于这一方面的速度将为187米。ABS材料的速度比PGA材料高。事实证明,3个Pro螺旋桨风扇的最高推力为5.1 m/s的最高速度,这与仅测量3.2 m/s的2个Pro Propeller风扇不同。3次经历0.155 mm失真,而2个产生0.103 mm。PLA材料在所有人之间的影响价值最小。
我们在 2014 年 2 月至 5 月期间进行了一项前瞻性观察研究。这项研究包括以色列空军 (IAF) 飞行学院以及教学和作战中队的 48 名参与者。中队包括固定翼运输机(Beechcraft Bonanza 和 King Air)、运输直升机(Blackhawks)和战斗机(Skyhawks 和 Falcon F16B)。我们排除了女性飞行员,因为 IAF 中的女性飞行员数量非常少,并且激素和月经状态的变化可能会影响体液平衡。7 我们还排除了正在服用任何药物或生病的飞行员。所有参与者均已获得知情同意。本研究已获得以色列国防军医疗队机构审查委员会的批准。所有参与者在飞行前均使用尿液试纸测量比重(SG,通过 Cobas 的 Combur10-Test 目测;尿液 SG 高于 1.020 被认为是脱水),并在仅穿着内衣的情况下使用电子秤(由 Beurer manufacturing, Golborne, UK)测量体重(以千克为单位,四舍五入到最接近的 100 克)。飞行员完成了一份问卷,其中包括有关计划飞行的数据、飞行前一晚的睡眠时间以及他们是否在飞行前 24 小时内进行过锻炼。身高是从医疗记录中获得的,BMI 的计算方法是体重(千克)除以身高(米)的平方。飞行是常规中队计划的一部分,并非由调查人员设计的。飞行后数据包括仅穿着内衣时用同一电子秤测量的体重、尿液试纸测量比重,以及一份填写完整的问卷,其中包括有关飞行期间食物和液体摄入量和排尿的数据,以及实际飞行细节。飞行前后对飞行员在飞机上摄入的食物和液体进行了称重。每次飞行时,使用气象袖珍仪表(Kestrel 1000 风速计,明尼阿波利斯,明尼苏达州)在地面测量环境热应激,并用热应激指数表示。飞行期间的液体损失计算为飞行前体重加上液体和食物摄入量,再减去飞行后体重。结果进一步根据飞行时间(以分钟为单位)进行标准化。我们认为体重减轻 1% 是有意义的体液流失。统计分析采用 SPSS v.22(IBM,纽约州阿蒙克)进行。统计显著性定义为 P , 0.05。
摘要 — 事故分析表明,飞行员可能无法处理诸如警报之类的听觉刺激,这种现象称为注意力不集中性失聪。这项研究的动机是开发一种被动脑机接口,可以预测在真实飞行条件下这种关键现象的发生。十名配备干脑电图系统的志愿者必须飞行一个具有挑战性的飞行场景,同时通过按下按钮来响应听觉警报。行为结果显示,飞行员错过了 36% 的听觉警报。ERP 分析证实,由于潜在的注意力瓶颈机制,这种现象会影响早期(N100)和晚期(P300)阶段的听觉处理。使用稀疏表示分类 (SRC)、稀疏和密集表示 (SDR) 以及更传统的方法(例如线性判别分析 (LDA)、收缩 LDA 和最近邻 (1-NN)),对警报开始前三秒提取的频率特征进行受试者间分类。在最佳情况下,SRC 和 SDR 分别给出了 66.9% 和 65.4% 的正确平均分类率来预测注意力不集中性耳聋的发生,优于 LDA (60.6%)、sLDA (60%) 和 1- NN (59.6%)。这些结果为神经自适应自动化的实施开辟了光明的前景,最终目标是增强警报刺激传递,以便人们感知和采取行动。