医疗保健行业目前正在看到移动设备的使用大幅上升。这些设备不仅提供了多媒体信息(例如临床记录和医疗记录)的沟通和共享的方法,而且还为人们提供了新的可能性,可以随时随地检测,监控和管理其健康。数字健康技术有可能通过提高患者护理的效率,有效和具有成本效益来改善患者护理。利用数字设备和技术可以对许多健康状况产生积极影响。这项研究的重点是吞咽困难,这是声音的变化,在生活中某个时候影响了大约三分之一的人。语音障碍越来越普遍,尽管经常被忽视。移动医疗系统可以为检测语音疾病提供快速有效的帮助。要使这些系统可靠和准确,重要的是要开发可以对智能健康和病理声音进行分类的算法。为了完成这项任务,我们利用了几个数据集的组合,例如Saarbruecken语音数据集(SVD),Massachusetts Eye and Ear extermary Database(MEEI)(MEEI)(MEEI),以及一些各种声音(健康和病理学)的私人数据集,此外,我们还应用了多个机器学习Algorith,包括多个机器的范围,并确定了多个机器的范围,并确定了vector and Supports,并确定了vector vector,并确定了vector,并确定了森林,并确定了森林,并在内它们以检测语音障碍。实验分析是根据灵敏度,准确性,接收器操作特征,特异性,F-评分和召回率进行的。结果表明,根据使用适当的特征选择方法选择的功能,支持向量机算法被证明是检测语音疾病最准确的。
抽象背景蛛网膜下腔出血(SAH)可能导致高度不利的预后。近年来,对SAH的研究集中在早期脑损伤(EBI)上,这是一个至关重要的进步,导致预后不良。SAH会导致各种并发症,包括线粒体功能障碍和DNA损伤。apurinic/ apyrimidinic核酸内切酶1(APE1)是一种必需的蛋白质,具有多方面的功能性,与DNA修复和氧化还原信号传导不可或缺。但是,APE1在SAH后线粒体DNA损伤修复中的作用尚不清楚。方法我们的研究涉及大鼠体内内血管内穿孔模型和体外神经元氧降解。然后,通过蛋白质印迹,免疫荧光,定量实时PCR,线粒体生物能测量和Neurobehavioural实验分析APE1对线粒体DNA损伤修复的影响。结果我们发现,在SAH大鼠模型中,线粒体DNA损伤和神经元死亡的水平下降。APE1的过表达改善了SAH后大鼠的短期和长期行为障碍。在体外,在暴露于氧蛋白的原发性神经元之后,APE1表达随着线粒体DNA损伤的增加而显着降低,呼吸链复合物水平的亚基降低以及随后的呼吸链功能障碍。APE1的过表达可解除神经元线粒体中的能量代谢疾病,并减少了神经元凋亡。ape1可能在SAH之后的EBI阶段起着至关重要的作用,使其成为治疗的关键目标。结论结论,SAH后EBI参与了APE1,通过通过线粒体呼吸链影响线粒体细胞凋亡。
利用量子现象实现计算加速的前景使得量子处理单元 (QPU) 对于许多算法数据库问题具有吸引力。查询优化涉及通常需要探索大型搜索空间的问题,似乎是量子算法的理想匹配。我们提出了连接排序的第一个量子实现,这是最受研究和最基本的查询优化问题之一,基于对二次二元无约束优化问题的重新表述。我们在两种最先进的方法(基于门的量子计算和量子退火)上对我们的方法进行了经验描述,并确定了与最知名的经典连接排序方法相比的加速,这些方法的输入大小符合当前的量子退火器。然而,我们也证实,早期技术的极限很快就会达到。当前的 QPU 被归类为嘈杂的中型量子计算机 (NISQ),并且受到各种限制的限制,与理想的未来 QPU 相比,这些限制降低了它们的能力,这阻止了我们扩大问题维度并实现实用性。为了克服这些挑战,我们的公式考虑了特定的 QPU 属性和限制,并允许我们在可实现的解决方案质量和问题规模之间进行权衡。与所有针对查询优化和数据库相关挑战的量子计算的先前工作相比,我们超越了当前可用的 QPU,并明确针对可扩展性限制:利用从数值模拟和实验分析中获得的见解,我们确定了共同设计 QPU 以提高其连接排序实用性的关键标准,并展示了即使相对较小的物理架构改进也能带来显着的增强。最后,我们概述了定制设计 QPU 的实际实用性之路。
摘要:未培养噬菌体对环境的影响取决于其首选的生命周期(溶菌性或溶源性)。然而,我们预测它的能力非常有限。我们旨在通过比较溶菌性和溶源性噬菌体的基因组特征与其宿主的相似性来区分溶菌性和溶源性噬菌体,反映它们的共同进化。我们测试了两种方法:(1)四聚体相对频率的相似性,(2)基于精确的 k = 14 寡核苷酸匹配的无比对比较。首先,我们探索了 5126 种参考细菌宿主菌株和 284 种相关噬菌体,并找到了使用两种基于寡核苷酸的方法区分溶源性和溶菌性噬菌体的近似阈值。对 6482 个质粒的分析揭示了不同宿主属之间以及在某些情况下远距离细菌类群之间水平基因转移的可能性。随后,我们通过实验分析了 138 株肺炎克雷伯菌及其 41 种噬菌体的组合,发现实验室中与这些菌株相互作用次数最多的噬菌体与肺炎克雷伯菌的基因组距离最短。然后,我们将我们的方法应用于来自温泉生物膜的 24 个单细胞,其中包含 41 个未培养的噬菌体-宿主对,结果与在此环境中检测到的噬菌体的溶源生命周期相一致。总之,基于寡核苷酸的基因组分析方法可用于预测 (1) 环境噬菌体的生命周期、(2) 培养物保藏中宿主范围最广的噬菌体,以及 (3) 质粒的潜在水平基因转移。
摘要:随着建筑工地越来越大、越来越复杂,维护建筑协议的需求也变得越来越必要。在施工现场安装材料、设备和人员的实时跟踪系统可以帮助项目经理加强建筑项目的安全性、质量控制、工人物流和维护当地法规。在本文中,我们将介绍集成无源射频识别 (RFID) 和建筑信息模型 (BIM) 以实时跟踪人员的方法。本研究的目的是利用 RFID-BIM 集成生成实时数据,以产生建筑协议控制的领先指标。建筑协议包括监控安全性、保障和验证是否维持旧金山经济和劳动力发展办公室的招聘要求。硬件组件包括无源 RFID 标签、门户 RFID 阅读器、固定旋转式阅读器、移动手持设备和云服务器。该系统部署在一个 900,000 平方英尺的医院项目中,该项目由三座主要建筑、125 名承包商和 1,200 名工人组成。提出了一种算法来减少和组织系统生成的数据。将 RFID 链接到行业基础类 (IFC) 已成为重点。初步结果表明,这些技术的集成产生的数据可用于实时资源跟踪、数据分析、法令合规性和区域安全违规。此外,该系统还提供实时可视化信息,可提供多种好处。值得注意的是,基于实验分析,我们证明 RFID 和 BIM 系统是一种实用且资源丰富的工具,可提供实时信息和位置跟踪以维持建筑协议控制。
世界级高效(高效型号) 顶级效率符合 AHRI 标准 550/590。 优化的压缩机设计包括转子和滑阀,适用于舒适冷却应用。 转子设计用于在不同压力范围内高效工作,涵盖空调和制冷应用。 滑阀利用排放和吸入之间的内部压力差控制开始吸入制冷剂的滑阀位置,从而控制冷却能力。 LG 风冷螺杆式冷水机组具有 4 级容量控制(100、75、50、25%)能力,针对部分负荷条件进行了优化。 精确的转子尖端间隙为螺杆旋转压缩机提供了出色的能源效率,因为这减少了压缩过程中从高压到低压侧的泄漏,从而实现了顶级 COP。 蒸发器使用具有螺旋角的内部槽管,这增强了水侧的传热性能。管的外侧具有最佳形状,大大提高了 R134a 的薄膜蒸发性能。V 形冷凝器在相同占地面积下可实现最大的传热表面积,当配置经过优化设计时,可实现最大的传热性能。LG V 形冷凝器盘管采用数值和实验分析设计,具有最佳空气流路,可优化散热性能。此外,增强的冷凝器翅片几何形状可在较小的空气侧压降下实现最佳传热性能,从而降低风扇电机的功耗。翅片经过预涂层处理,可在正常条件下防止腐蚀,也可选择在恶劣条件下可持续使用的环氧涂层翅片冷凝器。
世界级高效(高效型号) 顶级效率符合 AHRI 标准 550/590。 优化的压缩机设计包括转子和滑阀,适用于舒适冷却应用。 转子设计用于在不同压力范围内高效工作,涵盖空调和制冷应用。 滑阀利用排放和吸入之间的内部压力差控制开始吸入制冷剂的滑阀位置,从而控制冷却能力。 LG 风冷螺杆式冷水机组具有 4 级容量控制(100、75、50、25%)能力,针对部分负荷条件进行了优化。 精确的转子尖端间隙为螺杆旋转压缩机提供了出色的能源效率,因为这减少了压缩过程中从高压到低压侧的泄漏,从而实现了顶级 COP。 蒸发器使用具有螺旋角的内部槽管,这增强了水侧的传热性能。管的外侧具有最佳形状,大大提高了 R134a 的薄膜蒸发性能。V 形冷凝器在相同占地面积下可实现最大的传热表面积,当配置经过优化设计时,可实现最大的传热性能。LG V 形冷凝器盘管采用数值和实验分析设计,具有最佳空气流路,可优化散热性能。此外,增强的冷凝器翅片几何形状可在较小的空气侧压降下实现最佳传热性能,从而降低风扇电机的功耗。翅片经过预涂层处理,可在正常条件下防止腐蚀,也可选择在恶劣条件下可持续使用的环氧涂层翅片冷凝器。
DOI:10.6026/97320630016843 作者对本文内容负责。编辑部和出版商已采取合理措施检查文章内容,以符合出版道德规范,并在 PUBLONS 上提交了充分的同行评审。 官方电子邮件声明:通讯作者声明,并非所有作者都可以收到其所在机构的官方电子邮件 出版道德声明:作者声明他们遵守 COPE 出版道德指南,该指南在 https://publicationethics.org/ 其他地方有描述。作者还承诺,他们与任何其他第三方(政府或非政府机构)没有任何关联,这些第三方与本出版物有任何形式的不道德问题。作者还声明,他们没有隐瞒任何误导出版商的有关本文的信息。 摘要:在进入临床试验之前,鉴定化合物的毒性更为重要。了解物理化学性质、可能的目标和副作用已成为降低风险的主要公共卫生问题。通过实验分析药物的理化性质、药物与特定受体的相互作用以及确定药物的副作用仍然具有挑战性,既耗时又费钱。我们描述了一个名为 DaiCee 数据库的手动编译数据库,其中包含 2100 种抗癌药物,以及有关其理化性质、作用靶点和副作用的信息。它包括合成和草药抗癌化合物。它允许搜索药物的 SMILES 符号、Lipinski 和 ADME/T 特性、靶点和副作用概况。这有助于识别具有有效抗癌特性、毒性、体外和体内实验药物相似性的药物。它还用于使用数据库中化合物的可用数据对有效抗癌药物进行比较分析和筛选。该数据库将定期更新,为用户提供最新信息。该数据库可在 URL http://www.hccbif.org/usersearch.php 上找到 关键词:药物、特性、SMILES、ADME/T、靶点
环氧树脂是一种合成聚合物材料,由于其良好的机械、热、化学和耐腐蚀特性而广泛应用于复合材料制造。然而,其固有的脆性和低断裂韧性限制了其应用。为了解决这些问题,人们探索了加入液态环氧化天然橡胶 (LENR) 来增强环氧树脂的韧性和整体强度。将液态环氧化天然橡胶 (LENR) 添加到环氧树脂中的影响表明,在 3%wt LENR 含量下可实现最佳机械强度。值得注意的是,LENR 确实会影响环氧树脂的结晶速率。本研究旨在开发和表征结合橡胶增韧、镍锌 (NiZn) 铁氧体和石墨烯纳米片 (GNP) 填料的纳米复合材料。目标是研究它们的机械、热和电性能,并与仅由环氧树脂/LENR组成的复合材料进行比较。即使在低填料负载下,这些纳米粒子的引入也显着增强了复合材料的机械性能。值得注意的是,随着 NiZn 铁氧体的加入,环氧树脂/LENR/NiZn 铁氧体纳米复合材料的机械强度有所提高。实验分析表明,在 4%wt NiZn 铁氧体和 0.6%wt GNP 时可实现最佳强度。此外,这些纳米复合材料表现出全面的热稳定性改善。在电气方面,与环氧树脂/LENR/NiZn 铁氧体和环氧树脂/LENR/GNP 复合材料相比,环氧树脂/LENR/GNP-NiZn 铁氧体复合材料表现出优异的导电性。有趣的是,在存在 4%wt NiZn 铁氧体、0.4%wt GNP 和 GNP-NiZn 铁氧体的各种混合组合的情况下,所有纳米复合材料都从绝缘性能转变为半导体性能。结果表明,在加入 NiZn 铁氧体后,纳米复合材料内的磁相互作用增强。这种增强的相互作用可归因于饱和磁化强度 (MS)、剩磁磁化强度 (MR) 和环氧树脂基质内的磁性颗粒组成之间的正比关系。虽然 Fourier-
动机:精确药物利用患者特定的多模式数据来改善预防,诊断,预后和疾病治疗。提前的精确医学需要复杂,异质和潜在高维数据来源(例如多摩学和临床数据)的非平凡整合。在文献中,已经提出了几种方法来管理丢失的数据,但通常仅限于一部分患者的特征子集的恢复。在很大程度上被忽略的问题是当一个或多个患者完全缺少其中一个或多个数据来源时,这是临床实践中相对常见的状况。结果:我们提出了Miss类似网络融合(MISS-SNF),这是一种新型的通用数据集成方法,旨在在患者相似性网络的背景下管理完全缺失的数据。miss-snf通过利用从SNF算法借来的非线性消息通讯策略来整合不完整的单峰患者相似性网络。Miss-SNF能够恢复缺失的患者相似性,并且是“任务不可知论”,从某种意义上说,可以整合无监督和监督预测任务的部分数据。对来自癌症基因组图集(TCGA)的九个癌症数据集的实验分析表明,Miss-SNF达到最先进的方法会导致恢复相似性并识别出在临床上相关变量中富集的患者亚组,并具有差异性生存率。可用性和实现:在R中实现的MISS-SNF代码可在https://github.com/ anacletolab/misssnf上找到。此外,截肢实验表明,MISS-SNF监督了对整体生存和无进展间隔事件的预测,完全缺少数据的结果可与所有数据可用时获得的结果相当。