摘要:计算和实验工具的进步最近导致了新型先进功能材料开发的重大进展,与此同时,材料数据和信息总量也迅速增长。然而,要有效发挥先进数据密集型方法的潜力,需要在材料研究和开发背景下系统而有效地组织知识。语义技术可以支持知识的结构化和形式化组织,为数据的集成和互操作性提供平台。在本文中,我们介绍了材料和分子基础本体 (MAMBO),旨在组织分子材料和相关系统(纳米材料、超分子系统、分子聚集体等)计算和实验工作流领域的知识。MAMBO 结合了相邻领域材料科学本体的最新努力,旨在填补当前最先进的材料开发和设计知识建模方法的空白,针对分子尺度和更高尺度领域的交叉领域。 MAMBO 专注于操作流程、轻量级和模块化,能够扩展到更广泛的知识领域,并集成与计算和实验工具相关的方法和工作流程。MAMBO 有望推动数据驱动技术在分子材料中的应用,包括用于材料设计和发现的预测机器学习框架和自动化平台。
蠕虫寄生虫学是一门重要的学科,它常常带来独特的技术挑战。其中一个挑战是,蠕虫寄生虫,特别是人类体内的寄生虫,往往很难获得活体且数量足够进行研究;另一个挑战是在体外研究这些生物体 — — 蠕虫寄生虫的生命周期还未在宿主之外完全重现。可以说,阻碍蠕虫寄生虫学进展的关键问题是缺乏实验工具和资源,当然相对于驱使许多寄生虫学家采用自由生活的模型生物作为替代系统的丰富资源而言。为了满足这些需求,过去 10 到 12 年间,蠕虫寄生虫学开始步入“组学”时代,发布了丰富的测序资源,并开发了可用于检验生物学假设的功能基因组学工具。为了反映这一进展,英国寄生虫学会 2019 年秋季研讨会在贝尔法斯特女王大学举行,主题为“蠕虫寄生虫学的后基因组进展”。本期介绍了该领域当前发展状况的例子,而这篇社论总结了基因组数据集和功能基因组工具如何刺激我们对寄生虫生物学的理解取得了令人瞩目的进展。
抽象的传统超高性能混凝土(UHPC)具有卓越的开发潜力。然而,在整个水泥制造过程中产生了大量的CO 2,这与当前在全球范围内降低排放和保存能量的趋势相反,从而限制了UHPC的进一步发展。考虑到气候变化和可持续性问题,无水泥,环保,碱活化的UHPC(AA-UHPC)材料最近受到了广泛关注。在旨在降低实验工具和人工成本的高级预测技术的出现之后,本研究提供了基于机器学习(ML)算法的不同方法的比较研究,以提出一种基于活跃的学习ML模型(AL-STAKED ML),以预测AA-UHPC的压缩强度。收集了包含284个实验数据集和18个输入参数的数据丰富的框架。对可能影响AA-UHPC抗压强度的输入特征的重要性进行了全面评估。结果证实,在本研究中已经测试过的不同一般实验标本的堆叠式ML-3可用于98.9%的AL-3。主动学习可以提高精度高达4.1%,并进一步增强堆叠的ML模型。此外,通过实验测试引入并验证了图形用户界面(GUI),以促进可比的前瞻性研究和预测。
皮层刺激正在成为基础研究中的实验工具,也是治疗一系列神经精神疾病的有前途的疗法。随着多电极阵列进入临床实践,使用电刺激的时空模式来诱导所需生理模式的可能性在理论上已成为可能,但在实践中,由于缺乏预测模型,只能通过反复试验来实现。越来越多的实验证据证实,行波是皮层信息处理的基础,但尽管技术迅速进步,我们仍缺乏对如何控制波特性的理解。本研究使用混合生物物理解剖学和神经计算模型来预测和理解简单的皮层表面刺激模式如何通过抑制性中间神经元的不对称激活来诱导定向行波。我们发现锥体细胞和篮状细胞被阳极电极高度激活,被阴极电极激活的程度最低,而马丁诺蒂细胞被两个电极适度激活,但对阴极刺激略有偏好。网络模型模拟发现,这种不对称激活会导致浅表兴奋性细胞中产生行波,该行波会单向传播,远离电极阵列。我们的研究揭示了不对称电刺激如何通过依赖两种不同类型的抑制性中间神经元活动来塑造和维持内源性局部电路机制的时空动态,从而轻松促进行波。
摘要:Cas9(DCAS9)核酸内切酶的催化无效突变体具有多种生物医学应用,最有用的是转录的激活/抑制。dcas9家族成员也正在成为潜在的实验工具,用于在独立活细胞和完整组织的水平上进行基因映射。我们对CAS9介导的核室可视化的一组工具进行了初步测试。我们研究了doxycycline(DOX) - 可诱导(TET-ON)的细胞内分布,这些构建体的构造中编码DCAS9直系同源物(ST)(ST)和脑膜炎N.脑膜炎(NM)与EGFP和MCHERRY FOLORESCENT蛋白(FP)融合的人类A549细胞。我们还研究了这些嵌合荧光构建体的时间依赖性表达(DCAS9-FP)在活细胞中诱导中的诱导中,并将其与实验性DCAS9-FP表达的时间过程进行了比较灌注。在诱导后24小时内,肿瘤异种移植物发生了麦克利 - 奇氏菌表达的体内诱导,并通过使用皮肤的光学清除(OC)来可视化。OC通过局部应用Gadobutrol启用了肿瘤异种移植物中FP表达的高对比度成像,因为红色和绿色通道的FI增加了1.1-1.2倍。
成人心脏在受伤后表现出较差的修复能力。细胞移植和组织工程方法已成为可能的治疗选择。几个干细胞群体已被主要用于治疗梗塞心肌。然而,移植的细胞表现出有限的与宿主心肌细胞建立功能连接的能力。在这项研究中,我们提供了一种新的实验工具,称为3D离体肌肉工程组织(X-MET),以定义机械刺激在触发功能重塑和营救心脏缺血中的贡献。我们揭示了机械刺激会触发3D骨骼肌系统的功能重塑,以朝着心肌样结构。与未刺激和2D-骨骼肌培养系统相比,分子和功能分析的支持表明,重塑的X-MET表达功能性心肌细胞的相关标记。有趣的是,在慢性心肌缺血的鼠模型中,移植后的X-MET保留了心脏功能,并增加了移植受伤的小鼠的存活率。X-MET植入导致促炎细胞因子的抑制,抗炎细胞因子的诱导以及胶原沉积的减少。总的来说,我们的发现表明,生物力学刺激诱导了X-MET的心脏功能重塑,该重塑显示出令人鼓舞的精确结果,作为用于开发新型再生医学策略的治疗产物。
CRISPR/Cas9 可用作实验工具来灭活细胞中的基因。然而,CRISPR 靶向细胞群不会显示靶基因的统一基因型。相反,会产生多种基因型 - 从野生型到不同形式的插入和缺失。这种混合基因型使对所研究细胞群中靶基因作用的分析变得复杂。在这里,我们提出了一种快速通用的实验方法来功能性分析 CRISPR 靶向细胞群,而无需生成克隆系。作为简单的读数,我们利用 CRISPR 诱导的遗传异质性并使用测序来确定不同基因型相对于所研究的细胞行为或表型是如何富集或消耗的。该方法使用标准 PCR、Sanger 测序和简单的序列反卷积软件,使没有特定深入经验的实验室也能进行这些实验。作为原理证明,我们提供了研究造血细胞各个方面的例子(体内 T 细胞发育和体外活化、巨噬细胞和树突状细胞分化以及原癌基因过度表达诱导的白血病样表型)。总之,我们提出了一种快速的实验方法来识别与成熟免疫细胞以及正常和恶性造血相关的潜在药物靶点。2021 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creative-commons.org/licenses/by-nc-nd/4.0/)。
测量光的噪声是在连续变量(CV)图片中提供光谱模式量子状态的信息的主要实验工具,其中使用了涉及电磁场的四足动物的可观察物。然而,由于在测量过程中缺乏相相一致性,因此访问它的常用过程既不提供两种模板光谱量子状态[1,2]的纯量子测量。测量混合物当前将光谱量子状态的忠实重建限制为那些具有光谱均匀能量分布和高斯统计的人,需要使用先验知识才能实现完整的重建[1]。对于这种特定类别的量子状态,可以实现对“有效”单模正交算子的纯量子测量[2]。两种模式光谱态测量已从量子噪声挤压的第一个实验证明中,是对光谱模式的三方纠缠的最新观察结果[3-9]。在最近的一个实验中实现了一个突破[10],其中二级二阶矩形的四二阶段是通过强度测量与参数扩增相结合的。该方法允许直接观察到跨越55-THZ带宽的挤压。在其他测量情况下,还探索了用于非经典状态生成的参数放大器的这种组合,以及对状态的进一步阅读[11],在干涉测量[12]中,传送方案[13]或计算提案[13]或计算提案[14]。
摘要:小脑以其在感觉运动控制和协调中的作用而闻名,但越来越多的解剖学和生理学研究表明小脑与认知和情感功能密切相关。最近,光遗传学技术的发展和改进促进了小脑领域的研究,令人印象深刻的是,它彻底改变了方法论,赋予了研究全新的能力。这转化为感觉运动测试数据获取的显著改善,使人们能够将单细胞活动与运动行为关联起来,从而确定单个神经元类型和单个连接通路在控制运动运动学的精确方面的作用。在过去,当电刺激和药理刺激是唯一可用的实验工具时,将神经元活动与行为关联起来的这种特异性水平是无法实现的。光遗传学在研究小脑在高级和认知功能中的作用方面具有更重要的意义,因为小脑与多个大脑区域之间存在高度连接。光遗传学可能已经改变了这一领域的游戏规则,使用光遗传学研究小脑在清醒动物的非感觉运动功能中的作用的研究数量正在增加。这些研究主要涉及小脑在癫痫中的作用(通过与海马和颞叶的连接)、精神分裂症和认知、决策工作记忆和社会行为。同样值得注意的是,光遗传学为患者的小脑神经刺激开辟了新视角(例如,用于癫痫治疗和中风康复),有望在可激活或抑制的目标通路方面实现前所未有的特异性。
与疾病相关的小胶质细胞(DAM)是中枢神经系统神经退行性疾病的各个阶段出现的小胶质细胞。大坝,在该测序中,它们的特征是它们在淀粉样蛋白β斑块附近的独特定位及其吞噬细胞和脂质 - 金代谢特征。不幸的是,大坝的激活和病因仅在AD的背景下才能理解,在AD的背景下,在髓样细胞2上表达的受体(TREM2)(Trem2)是淀粉样蛋白β的受体,似乎是小胶质过渡到大坝状态的关键调节剂。尽管依赖AD中的Trem2,但DAM仍出现在其他神经退行性疾病中,其中TREM2可能不是关键参与者。这就提出了一个问题,即在所有神经退行性疾病中还是在神经退行性病理中存在异质性,是否存在大坝在所有神经退行性疾病中确实相同。可以利用帕金森氏病模型(PD)来划定对大坝病因学和激活以及大坝功能的研究的关键差距的研究,以补充AD模型中的研究。尽管关于大坝的高度不充分不足,但PD具有其蛋白质聚集相关病理的模式,例如AD,可以作为与AD发现的时空比较,以确定大坝的性质。可以指导这种调查未来的实验工具是多词模型。采用一种复合方法,重点是在染色质或mRNA水平和相关蛋白质输出下探索大坝的触发器,因此有可能强烈表征并坚定地回答什么是大坝的问题。