ANSC 5614。先进的动物营养。(3个学分)对非鲁姆和反刍动物的消化和代谢的营养,生理,微生物,免疫学和生化方面的比较研究。主题包括消化系统结构,养分的利用,能量代谢,对养分代谢的控制以及用于动物营养研究的实验技术。在本课程中将涵盖适合满足各种生理阶段,生长,妊娠和哺乳化的营养需求和评估配方的适用性。将重点放在发展批判性思维能力,阅读当前文献以及以书面和口头形式吸收科学概念。查看类(https://catalog.uconn.edu/course-search/?详细信息和代码= ANSC%205614)
概述了确定船体阻尼系数的全尺寸和模型试验方案。文献调查讨论了船舶振动阻尼的现有数据,并评估了过去使用的分析和实验技术。现有的船舶阻尼数据已被证明不足以做出可靠的振动预测。讨论了一种方案,用于通过实验分离与每种重要振动模式相关的阻尼系数,以及将总阻尼分解为单独的分量(结构、货物和流体动力学),并确定阻尼沿船体的分布。讨论了用于减少实验数据的激励装置和分析方法,以及对两艘船(一艘 74,000 吨级的大湖矿砂船和一艘 30,000 吨级的集装箱船)的具体应用。
• 现有的解决方案主要基于摄像头。驾驶员摄像头的问题包括照明、眼镜、帽子、公交车和卡车的安装角度、没有自检功能以及没有备份冗余。它们会错过睁着眼睛睡觉的驾驶员的关键警报。道路摄像头识别出驾驶员在未打信号灯的情况下变道,但驾驶员可能已经在驾驶时睡着了。摄像头无法识别疲劳的早期迹象,只能识别驾驶员即将睡着时的后期困倦迹象。其他实验技术则存在运动伪影问题。• “驾驶时突发健康紧急情况可能会造成毁灭性的影响,包括对周围交通造成没有警报的后果。”
可以通过Zn-Modifified沸石催化剂进行有效执行的光烯烃转化为高价的芳族烃。1–4已使用了各种方法2,5用于在沸石中加载锌,因此,锌物种,沸石孔内和晶体的外表面的不同类型,尺寸和局部位置已被考虑用于催化的机制。6–8在这方面,正确表征载入沸石的锌物种的状态至关重要。在最近的工作中,我们使用以下实验技术来研究Zeolites中的Zn物种:8个扩展的X射线吸收细胞(EXAFS),X射线光电子光谱(XPS)和弥漫性反射红外傅立叶傅立叶傅立叶变换光谱(Refrancopopicy),后来用于
拓扑材料的特点是具有拓扑非平凡的电子能带结构,从而获得了出色的传输特性。[1–6] 将这些奇异相开发成有用的应用的前景吸引了广泛的努力来识别和分类候选拓扑材料,证据是出现了许多基于电子能带连通性、[7–13] 基于对称性的指标、[7,14–21] 电子填充约束、[7,22,23] 和自旋轨道溢出的理论框架。[24–26] 这些框架有助于预测 8000 多个拓扑非平凡相,[27–34] 这是一片广阔的未开发实验领域。这为开发用于高通量筛选候选材料的互补实验技术提供了强大的动力。当前最先进的技术,如角分辨光发射光谱 (ARPES)、扫描隧道显微镜 (STM) 和
亲爱的编辑,我们非常感谢我们的研究的兴趣和积极评论,“基因表达,形态和电生理学OGY在人类诱导的多能干细胞衍生的心房和心室样性心肌细胞的动态发展过程中”。我们认为诱导的多能干细胞定向分化技术代表了研究心肌细胞成熟状态的关键方法。我们采用了视黄酸(RA)和Wnt信号传导,用于IPS-AM和IPS-VM分化的小分子药物。1,我们用不同的实验技术(例如QRT-PCR,免疫荧光,流动细胞仪和斑块夹),在基因表达,形态和电疾病学方面验证了心房和室状肌细胞的动态成熟过程。在这项研究中,我们进行了动作潜在记录以评估细胞成熟。
Qubit读数是任何量子信息处理器中必不可少的元素。在这项工作中,我们在实验中证明了transmon和Polarmon模式之间的非扰动交叉kerr耦合底,该模式可以改善量子非态度(QND)读数,用于超导速度。新机制使用与分散近似中的标准QND量子读数相同的实验技术,但由于其非扰动性质,它最大化了速度,单发忠诚度和读取的QND属性。此外,它可以最大程度地减少不需要的衰减通道的影响,例如purcell效应。我们观察到短50 ns脉冲的单次读数保真度为97.4%,并且对长度测量脉冲的QND度为99%,并具有重复的单发读数。
摘要:基于纳米载体的系统有望成为“埃尔利希博士的魔力子弹”,能够将药物、蛋白质和遗传物质完整地运送到生物体亚细胞水平的特定位置。但关键问题是纳米载体如何被细胞内化以及如何控制其细胞内运输和在细胞内的命运,这仍有待解答。在本综述中,我们调查了基于各种聚合物纳米载体的药物输送系统、它们的摄取机制以及用于内化研究的实验技术和常见途径抑制剂。虽然能量依赖性内吞作用被视为主要的摄取途径,但载药纳米载体在内化时的完整性似乎是一个很少得到解决的问题,它会严重影响系统在体内和体外的摄取动力学和毒性。