电动汽车的标准电池组。1.2带PCM的范围电池热管理提出更有效的热性能。引脚鳍会降低体积温度并提高温度均匀性。混合冷却效果显示出有效的热量耗散速率。通风孔的提供有助于保护电池外壳。2。材料和实验技术应对OLA S1 Pro电池的安全问题,进行了缩放分析,数据代表电池组的1/20。考虑到原始电池出现安全问题的事件,包括捕火的风险,这种故意减少旨在促进受控的测试和评估。对OLA S1 Pro电池组1/20的数据的考虑如下:通过将标称电池组电压U BP [V]分配给每个电池电池u BC的电压[V]来计算字符串中连接的电池单元的数量。字符串的数量必须是整数。因此,计算的结果被四舍五入到较高的整数。
抽象的非侵入性皮肤表征设备正在成为临床皮肤研究中的宝贵工具。近年来,用于确定皮肤生物力学特性的可用实验技术和方法的范围已大大增加。尽管大量工作专门用于评估宏观皮肤表征设备的工作原理,但仍缺乏合理化和比较。这是促使本研究的促进,该研究旨在表征和比较三种常用的工作原理:吸力,动态剪切负荷和凹痕。使用可调机械性能的合成模型系统评估三个设备,并根据相应的有限元模型合理化了结果。对健康志愿者进行了体内测量,以研究区分不同身体位置皮肤的生物力学特性的能力,并评估每个设备的内部和评估者间可靠性。目前的比较分析表明,被分析的功能原理对人皮肤的僵硬感不同,这与解释各自测量结果的含义相关。
量子科学与技术(QuST)跨学科双学位 第 6/7 学期的 B.Tech 学生有资格升级到五年制跨学科双学位(B.Tech 和 M.Tech)课程。 沿着这个思路,我们想提议提供量子科学与技术(QuST)的 DD 课程。 鉴于当今学术界和工业界对量子计算和信息的广泛兴趣,我们希望这样的课程除了吸引 EP 学生之外,还能吸引大量来自 EE、MME、ME、CS 系的学生。 学生必须从不同系的先进材料和纳米科学选修课列表中选择四门选修课(36 个学分) 量子科学与技术 DD 课程列表 将有四门核心课程,包括量子计算和量子信息课程、量子计算和计量实验技术 ID 课程、量子电子学和激光课程以及光信号处理和量子通信课程。 (36 个 DD 核心课程学分)。核心课程还包括第 9 和第 10 学期的一个项目,价值 85 个学分。第七学期
和跟踪原子运动,从而提供了详细的见解,对构象变化和分子动力学。5通常,MD模拟从实验确定的三维结构开始,随后能量最小化和对近似生理条件的平衡。MD模拟的强度在于它们能够揭示各个时间尺度上符合符合性变化的能力,从而提供了动态的信息,这很难通过传统的实验方法获得,尤其是在酶变构调节的背景下。变构调节是指通过构象变化调节酶活性的过程,通常会参与关键分子间相互作用的动态调整。由于这些过渡发生在次纳秒至millise-cond时标,因此他们具有挑战性地使用传统的实验技术直接观察。MD模拟提供了很高的时间分辨率,从而实现了调节机制的表征。通过跟踪酶构象变化和内部分子动力学,MD模拟有助于鉴定控制酶活性和信号转导的变构位点,这通常是从单独静态结构分析中获得的信息。6
近期的量子通信协议不可避免地会受到信道噪声的影响,缓解这一问题主要尝试利用多方纠缠或复杂的实验技术等资源。生成多方高维纠缠并不容易。这要求探索可用当前设备实现的现实解决方案。本文特别受生成多方纠缠态的困难的启发,研究了以最小要求实现无误差信息传输。为此,我们提出了一种用于通信的新型信息编码方案。该编码方案基于这样一个事实:大多数噪声信道都会使某些量保持不变。基于这一事实,我们将信息编码在这些不变量中。这些不变量是算符期望值的函数。该信息在噪声信道中不发生改变。值得注意的是,这种方法与其他现有的纠错方案并不冲突。事实上,我们已经展示了如果对逻辑基态的选择施加适当的限制,标准量子纠错码是如何出现的。作为应用,为了说明,我们提出了一个量子密钥分发协议和一个错误免疫信息传输协议。
如今,实验技术使科学家可以访问大量数据。为了从生成这些数据的复杂系统中获取可靠的信息,需要适当的分析工具。卡尔曼滤波器是一种经常使用的技术,可以推断出系统的模型,即从不确定观察结果中的模型参数。最近证明,卡尔曼过滤器的无味卡尔曼过滤器(UKF)的实现,能够推断一组耦合混乱振荡器的连通性。在这项工作中,我们测试UKF是否还可以重建一小组耦合神经元的连通性,而它们的链接是电气突触或化学突触。特别是我们认为Izhikevich神经元,并旨在推断哪些神经元相互影响,将模拟的尖峰列车视为UKF使用的实验观察结果。首先,我们验证UKF是否可以恢复单个神经元的参数,即使参数随时间变化。第二,我们分析了小型神经集合,并证明UKF允许推断神经元之间的连通性,即使是为了异构,有指导性和时间发展的网络。我们的结果表明,在这个非线性耦合系统中,可以进行时间有关的参数和耦合估计。
新的化学反应的发展本质上与人类的繁荣和环境的保护。最近具有深远影响的这种变革性化学反应的一个例子是交叉偶联反应,该反应是通过2010年诺贝尔化学奖授予的。这些反应用于生产大约20%的所有药物试剂,几乎所有液晶和有机电致发光材料。这些化学反应的工业用途每年为全球经济贡献约60万亿日元。因此,新的化学反应的发展显着影响社会的发展。ICREDD是北海道大学的WPI中心化学反应设计与发现研究所,来自不同学科的研究人员结合了他们的优势,以完全控制化学反应。该研究所的意识到,有目的的化学反应设计需要在每个步骤中进行横断面合作。从事这样一个基本的自然过程,量子化学计算,信息技术,现代实验技术和先进材料的开发,如果我们想实现重大突破,则不再是单独的领域。相反,他们必须成为真正集成研究的多样化工具箱的一部分。
摘要 增强子-启动子环路模型长期以来一直主导着基因调控领域,其中增强子通过物理接触激活其靶基因。然而,由于存在替代机制的证据以及缺乏系统验证(主要是由于缺乏合适的实验技术),该模型的普遍性受到了质疑。在本研究中,我们提出了一种新的基于 MNase 的邻近连接方法,称为 MChIP-C,该方法可以在基因组范围内以单核小体分辨率测量蛋白质介导的染色质相互作用。通过应用 MChIP-C 研究 K562 细胞中以 H3K4me3 启动子为中心的相互作用,我们发现与基于限制性内切酶的 C 方法相比,它具有大大提高的分辨率和灵敏度。这使我们能够将 EP300 组蛋白乙酰转移酶和 SWI/SNF 重塑复合物确定为建立和/或维持增强子-启动子相互作用的潜在候选者。最后,利用已发表的 CRISPRi 筛选数据,我们发现大多数经过功能验证的增强子确实与其同源启动子发生物理相互作用,支持增强子-启动子环路模型。
该项目旨在将ML工具专门用于静电相互作用,以便在几种应用中加速计算,从经典分子动力学(MD)到隐式溶剂(IS)模型。尤其重要。可以通过显式溶剂MD或通过IS模型来计算它们,例如Poisson-Boltzmann方程(PBE),椭圆形偏微分方程。pbe很好地描述了复杂几何形状中的静电。在存在离子的情况下,溶剂的行为可以用不同程度的准确性描述,这不可避免地反映了计算成本以及处理大型系统的可行性。如今,由于最现代的实验技术(例如Cryo-Em),这些方法的结构数据量和大小巨大,因此正在经历重大的复兴,这对明确的溶剂造型构成了巨大的挑战。尤其是由于其固有的远距离效应,静电是巨大的计算挑战。在该项目中,我们旨在建立和巩固新的理论和模拟方法,在这些方法中,PIML技术可以提高静电计算,还利用了非平衡统计机制领域的最新数学发展,以及响应理论。
随着热科学的最新进展,例如开发新的理论和实验技术,并发现了新的运输机制,这有助于重新审视振动热传导的基本原理,以制定更新的和知识的物理理解。模拟和建模方法的成熟度的越来越多,激发了利用这些技术来通过数字工程和多规模的电子热模型来快速改善和开发技术的愿望。考虑到这一愿景,这篇综述试图通过关注子领域之间通常未解决的关系来建立对热运输的整体理解,这对于多尺度建模方法至关重要。例如,我们概述了模式(计算)和光谱(分析)模型之间的关系。我们根据扰动方法和经典的基于透射率的模型将热边界电阻模型与热边界电阻模型相关联。我们讨论了晶格动力学与分子动力学方法之间的关系,以及最近出现的两通道传输框架,并连接了晶体样和无定形的热传导。在整个过程中,我们讨论了建模实验数据的最佳实践,并概述了这些模型如何指导材料级别和系统级设计。