环境气象学的双度科学硕士课程由特伦托大学和因斯布鲁克大学共同管理。该计划中提供的课程涵盖了与大气和气候过程有关的各种主题及其与环境系统的联系。学生将受到刺激,以熟悉接近天气,气候和环境科学的不同方式,包括实验技术,理论分析和数值模拟。环境气象学中的毕业生将能够准备和提出天气预测,进行大气和环境测量,分析和解释来自观测值的数据,以及运行数值模型,以模拟大气和环境过程。在第一年的特伦托大学和第二年的第一学期在特伦托大学和因斯布鲁克大学进行了讲座。第四学期致力于论文和相关活动,可以在两所大学中的任何一个,或在另一所大学,研究机构或运营组织(气象服务,环境机构等)上花费根据适当的协议。与Fondazione Edmund Mach(FEM)合作教授环境气象大师。
利用基于铂的药物的常规抗癌疗法主要依赖于治疗剂的血管内注射。抗癌药通过受细胞摄取,快速清除和排泄的全身血液环境分布。因此,只有一小部分基于铂的药物到达肿瘤部位,这与严重的副作用有关。因此,有针对性的递送系统非常需要,因为它们为癌细胞提供了增强和选择性的药物递送,从而使治疗更加安全,更有效。最新,已经开发并测试了利用纳米材料的各种基于PT的药物靶向输送系统(基于PT的DTDSS),并使用一系列分析技术进行了测试,这些技术提供了有关其合成,稳定性,生物分布和细胞毒性的基本信息。在这里,我们总结了这些实验技术,表明它们在研究的不同阶段的适用性,并指出了它们的优势,优势,缺点和局限性。此外,对现有的策略和AP策略进行了严格的审查,目的是揭示并引起适用于可靠的基于PT的DTDSS表征的分析方法的发展,这最终将导致新的疗法和更好的患者的结果。
尽管真空电弧和梯度极限理论已用于线性对撞机和托卡马克等大型项目的设计和成本核算,但人们对其了解甚少。在真空电弧被隔离近 120 年后,电弧的确切机制及其产生的损害仍然存在争议。我们描述了真空电弧的简单通用模型,该模型可以包含所有活动机制,旨在解释所有相关数据。我们的四阶段模型基于在 805 MHz 下进行的实验,实验采用了各种腔体几何形状、磁场和实验技术,以及原子探针断层扫描和微电子故障分析的数据。该模型考虑了电弧的触发、等离子体形成、等离子体演化和表面损伤阶段。我们的数据清楚地显示了由差异冷却产生的表面损伤,这种损伤能够产生局部高场增强 β ∼ 200,并在后续脉冲中产生电弧。我们更新了模型并讨论了新特征,同时还指出了新数据在将模型扩展到更宽的频率范围方面会很有用的地方。
说明此研讨会是MDDB项目的一部分。在短短的几十年中,分子动力学(MD)世界已经从一些高度专业的团体主导的领域,对技术和软件开发人员通常是方法和软件开发人员的深刻了解,转变为在包括生物学在内的许多科学领域都存在MD的情况。分子力学用于放松模型,例如在Alphafold中,现在许多实验技术等实验技术定期将其数据与仿真相结合,我们看到了数据驱动的建模的出现,其中大量的实验数据,例如。来自突变研究或基因组测序与模拟结合(尤其是在Covid-19大流行期间)。一方面,该领域在更准确的力场,更有效的MD发动机的开发,对增强采样算法的更好理解中取得了巨大进展 - 更不用说计算机的进步以及在具有预测能力的技术中转化了MD的定制设计硬件,该技术可用于削弱生命和生命的能力。但是,尽管该领域蓬勃发展,但我们也面临着许多挑战:Exascale计算机将提供比以往任何时候都更多的功率,但是在模拟中不可能使用所有这些功能,而无需取得采样算法的进步。同时,社区的努力正在协调数千台私人计算机的使用,这些计算机的合并功率允许在许多情况下获得比使用大型超级计算机获得的富裕的合奏。冷冻整体和超分辨率显微镜。经典的力场可以说是达到其极限,并且随着商品硬件越来越优化了对AI工作负载的优化,可以说是时候从根本上重新审视我们的方法来迫使我们的磁场,但是当前,这些方法降低了经典模拟的降低阶级,而在模拟长度上,我们会带来仿真的长度,这使我们回到了采样效率的质疑。MD模拟和粗粒子和介观模型的组合开放了研究的新领域,以研究甚至真核染色质的小细胞器,事实证明,这是一种非常有价值的补体,例如但是,这些模型显然没有达到整个系统中进行彻底采样的时间表;应该如何处理?我们可以将更多的实验数据集成为限制因素,还是需要新一代的超透明粒度模型?我们是否可以找到方法来对模型量表进行逐步缩放,而不会固有地卡在最内在/最慢的模型的时间范围内?我们认为,现在是时候审查最近的发展,批判性地评估有潜力进行重大科学进步的领域,确定可以解决的瓶颈和挑战,并共同制定了社区路线图,以解决关键问题。我们想审问和向现场世界领导者学习:
横向-1 3 3 宽度-1 3 3 总计 24 27 第五学期 应用光学 EP3L001 3-0-0 3 3 固体物理学 EP3L002 4-0-0 4 4 原子与分子物理学 EP3L003 3-0-0 3 3 高级量子力学 EP3L004 3-0-0 3 3 工程物理实验室-III EP3P001 0-0-6 4 6 横向-2 3/4 3/4 宽度-2 3/4 3/4 总计 23/25 25/27 第六学期 物理实验技术 EP3L005 3-0-0 3 3 核物理学与粒子物理学简介 EP3L006 3-0-0 3 3 产品开发实验室 EP3P002 0-0-9 6 9 研讨会 EP3S001 0-0-2 2 2 选修课-1 3-0-0 3 3 横向-3 3/4 3/4 广度-3 3/4 3/4 总计 23/25 26/28 第七学期 选修课-2 3-0-0 3 3 选修课-3 3-0-0 3 3 选修课-4 3-0-0 3 3 选修课-5 3-0-0 3 3 工业培训 国防 EP4T001 0-0-0 2 0 项目-I EP4D001 0-0-0 4 6 广度-4 3/4 3/4 总计 21/22 21/22 第八学期 选修课-6 3-0-0 3 3 选修课-7 3-0-0 3 3 选修课-8 3-0-0 3 3 选修课-9 3-0-0 3 3 项目-II EP4D001 0-0-0 6 9 总计 18 21 累计总数 178/183 199/204 建议课程总学分:179/183(总接触时长:198/204)
亲爱的全部,亲爱的,我们将开始新的一年,我们必须承认,我们的时间工作也很密集且苛刻,几乎没有立即阅读的内容的空间。但是,在坚信这很宝贵的情况下,我邀请您花点时间探索索邦大学化学新闻通讯的第十三期。我还鼓励您查看本通讯的旧数字,可在UFR网站新闻节上获得。发现一种意外的实验技术,加深未知的主题,启动合作,甚至访问创新平台:这些新闻通讯的许多资产和社区的财富,这些新闻通讯强调,我们可以更好地共同发展。在本期中,您会发现我们通常有略有变化的通常部分,这是人力资源部分,专门定向博士生。我还借此机会宣布开幕式招聘活动,鼓励在论文结束时为该活动申请。一个新的“要记住的日期”为这项运动和我们社区的其他重要事件的截止日期。我很高兴在2025年1月31日(星期五)下午4:30见到UFR薄煎饼,我们可以最后一次祝福自己,这是新的一年。阅读非常好!Souir Boujday,化学主管UFR
的方法,以确定来自单个原子计数中3D体积的多晶材料中溶质分离的Gibbs三重连接过量(γTJ)。一种方法基于累积分析,而另外两种方法则使用溶质原子的径向整合。这些方法已被证明并在模拟模型体积上进行了比较,其中包括三个晶界在三连接处连接,并具有吉布斯晶界和三连接过量的设置值。一种实验技术,可提供3D体积的单个原子检测和接近原子量表的空间分辨率是原子探针断层扫描。cosi 2薄膜的原子探针断层扫描量已获得三个晶界和三连接。Ti分离是在晶界和三连接处定性发现的。在所研究的COSI 2三重连接处的Ti过量的定量揭示了三种引入的方法阳性吉布斯三重连接过量值。它表明COSI 2三重连接处有过量的Ti,并为其量化提供了机会。
摘要:激光金属沉积 (LMD) 工艺是一种增材制造方法,通过激光束与气体/粉末流的相互作用生成 3D 结构。流径、表面密度和焦平面位置会影响沉积轨迹的尺寸、效率和规律性。因此,准确了解气体/粉末流特性对于控制工艺和提高其在工业应用中的可靠性和可重复性至关重要。本文提出了多种实验技术,如气压测量、光学和称重方法,以分析气体和粒子速度、粉末流直径、其焦平面位置和密度。这是针对三种喷嘴设计和多种气体和粉末流速条件进行的。结果表明:(1) 粒子流遵循高斯分布,而气体速度场更接近于平顶分布;(2) 轴向、载体和整形气流显著影响粉末流的焦平面位置;(3) 只有整形气体、粉末流速和喷嘴设计会影响粉末流直径。然后对三个喷嘴分别进行具有 RANS 湍流模型的气体和粉末流的 2D 轴对称模型,结果显示与实验结果具有良好的一致性,但压力测量对气体速度的估计过高。
我研究了半导体中分离的氢,除了开发新的实验技术以做到这一点。活动/项目包括:“ Beo中的Muonium State的微波研究”,“ GAAS负电荷的Muonium上的光电子化光谱”; “通过光激发哑光自旋光谱探测的ZnSE中的受体氢状态”; “中性和磁磁性muonium作为β-GA2O3中分离氢的类似物”; “研究金红石,解剖酶和布鲁克特二氧化钛的MU/H样状态”; “探测磁性,金属到半导体过渡的金属以及H中H中H的性质”; “研究透明导电氧化物中的氢动力学和稳定性”; “氢杂质在CIGS和CZTS化合物中的作用和行为(下一代太阳能电池材料)”; “描述锡氏合金中H杂质的早期历史”; “开发激发态(MUSES)技术用于半导体的MUON光谱”; “研究MU(类似于H的)国家,包括停止位点,动力学以及碳化硅中的供体和受体水平”;“ GE中的Muonium-Photocarrier相互作用”; GAAS中的“ Muonium-photoionization和Muonium-Photocarrier相互作用”; “旋转北极星候选材料的调查”
作为一名讲师,尼古拉斯·阿格拉特(NicolásAgraït)教授了各种本科物理学课程,包括流体物理学,计算机科学,实验技术,量子力学和固态物理学。他以清晰且易于访问的方式传达概念的能力给他的学生留下了持久的印象,其中许多人继续从事学术界和行业的成功职业。他还监督了许多单身汉和硕士学位,这使他的学生有机会开始进行科学职业。总体而言,尼古拉斯(Nicolás)监督了12个博士学位论文,以智慧和奉献精神指导他的学生,鼓舞人心的好奇心和科学严谨。尼古拉斯·阿格拉特(NicolásAgraït)教授自1989年加入UAM中的低温实验室以来一直在扫描探针显微镜领域工作。在那里,他在低温下建立了新的扫描隧道显微镜(STM),并研究了从隧道状态到接触式的过渡,以解释纳米尺寸金属中电导的量化。奇异力传感器的发展使他能够在纳米尺度上研究塑性变形过程,表明在此规模上,塑性变形过程是作为一系列弹性阶段进行的,并与原子重排交替进行。这些作品的影响很高。