目前还缺少关于纳米级限制下固体热性质的理论和机制理解。我们开发了一种薄膜的理论量子限制描述,它预测了热容量的新物理定律。具体而言,由于薄膜限制抑制了振动模式,振动态密度 (VDOS) 在频率上偏离德拜二次定律,而是频率的立方。这导致热容量的温度依赖性为 ∼ T 4 而不是德拜的 ∼ T 3 定律。此外,新理论预测随着纳米薄膜厚度的增加,热容量会线性增加。这两种依赖性与最近关于 NbTiN 薄膜的实验数据高度一致。
本文的目的是双重的。首先,它试图揭示人类和其他动物在非零和游戏中在决策策略中学习的算法,特别是专门针对完全可观察到的迭代囚犯的困境情景。第二,它旨在开发一种新模型来解释战略决策,反映了以前的神经生物学发现,表明不同的大脑电路负责自指的处理和理解他人。该模型源于参与者 - 批评框架,并结合了多个批评家,以允许对自我和他人状态进行独特的处理。我们通过与人类的实验数据进行比较,验证了算法的生物学合理性和可传递性。
1。作弊:有意使用或试图在考试中使用未经授权的笔记,书籍,电子媒体或电子通信;在考试中与同学交谈或看别人的工作;事先提交工作进行课堂考试;让某人为您参加考试或为别人参加考试;违反了管理考试管理的其他规则。2。制造:包括但不限于伪造实验数据和/或引用。3。窃:在任何学术练习中,有意或故意代表他人自己的言语或思想;不归因于直接报价,释义或借来的事实或信息。4。未经授权的合作:共同从事本来可以单独完成的工作。
人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即
该图说明了DSI数据“转换”的简化示例。数据库名称以粗体列出。它显示了如何在科学数据库中转移和相互连接的DSI。该过程始于研究人员从欧洲核苷酸档案(ENA)中获得大肠杆菌基因组。从该基因组中,研究人员可能使用RefSeq确定了特定的感兴趣基因。然后,研究人员检查了该基因编码的酶(一种蛋白质),以及其特性,记录在Uniprot中。他们会进一步了解涉及酶的生化反应,他们咨询Brenda。研究人员利用KEGG提供的数据来编译代谢途径,这些数据与来自代谢的实验数据交叉引用。要分析与这些途径相关的化学特性(即,我们对酶破裂或将其放在一起的小分子的理解),研究人员转向Pubchem。出于药物开发的目的,它们将这些化学性质与在药品库中列出的已知药物,寻找潜在的抑制剂或激活剂进行了比较。接下来,研究人员探讨了有关这些药物的其他实验数据的临床试验。为了对上下文和含义有更广泛的了解,他们在PubMed上进行了交叉引用的发现,该发现提供了对同行评审出版物的访问。这种数据的迭代探索和交叉引用最终可帮助研究人员注释基因在基因本体论(GO)数据库中更准确地发挥作用,从而恢复了研究周期并增强了整体知识库。在这个简化的示例中,使用了11个与DSI相关的数据库,但实际上,使用DSI的科学家需要数千个。
心脏细胞电生理学的建模是系统生物学中最成熟的领域之一。这种扩展的研究工作集中的集中度带来了新的挑战,其中最重要的是选择哪种模型最适合解决特定的科学问题。在上一篇论文中,我们介绍了开发在线资源以在广泛的实验场景中对电生理细胞模型进行表征和比较的最初工作。在这项工作中,我们描述了我们如何开发了一种新颖的协议语言,使我们能够将数学模型的细节(大多数心脏细胞模型采用了普通微分方程的形式)与所模拟的实验协议分开。我们开发了一个完全开放的在线存储库(我们称为心脏电生理网络实验室),该存储库可以允许用户存储和比较将相同的实验协议应用于竞争模型的结果。在当前的论文中,我们描述了这项工作的最新和计划的扩展,重点是支持从实验数据中构建模型的过程。我们概述了开发一种可读性语言的必要工作,以描述从湿实验室数据集中推断参数的过程,并通过使用实验数据拟合HERG通道模型的详细示例来说明我们的方法。我们通过讨论在该领域取得进一步进步的未来挑战,以促进心脏细胞模型开发的完全可重现方法,以进一步的进步。©2018作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
神经网络可以成为进一步改进理论计算的良好工具。图 2 显示了典型神经网络的工作原理。真正的目标可以是原子核的实验数据,预测由网络给出。整个项目就像做一块早餐面包。第一步,你需要烤面包,然后在面包上涂上黄油或果酱。HFB 计算就像烤面包的过程,它提供了基础。之后,ML 算法的修饰可以更好地改善口感。人工智能技术与物理学的结合不仅是科学上的一种流行尝试,也是一种优化。这些结果对于未来对未知重核的实验也很有用。
该项目由四个工作包组成。在第一个工作包中,根据 DLR 要求定义和记录了载荷过程。在第二个工作包中,比较了不同复杂程度的数值模拟方法,重点是空气动力学方法以及离散阵风和机动载荷的分析方法。在第三个工作包中,比较了不同的机身结构尺寸确定方法,并使用实验数据进行了验证。在第四个工作包中,载荷过程的实施已应用于不同的用例 - 应用包括为运输飞机配置生成初步设计载荷、对现有远程飞机的载荷进行数值分析以及在两个