未来的风力涡轮机设计必须包括风洞测试,以产生用于设计的高质量实验数据。这些实验数据(包括翼型和整体系统性能)可用于验证和改进风力涡轮机叶片和系统的设计。目前,风力涡轮机的实验测试很少,大部分空气动力学设计都是使用 PROFIL 和 XFOIL 等计算工具完成的。计算流体动力学 (CFD) 预测正在改进,将成为风力涡轮机叶片设计的杰出工具;但是;这些代码不够稳健,无法预测低雷诺数下的性能。风力涡轮机的 CFD 代码几乎没有经过实验室验证,尤其是低雷诺数的 CFD 代码。通常,风力涡轮机都是按全尺寸设计和制造的。因为风洞测试通常是在现场测试,以与设计预测进行比较。然而,现场测试也可能是一个非常昂贵的过程。本章将重点介绍对风力涡轮机叶片进行实验测试的必要性,以确定在典型雷诺数下运行的翼型升力和阻力数据,以及对风力涡轮机系统(叶片和发电机)进行测试以确定整体风力涡轮机性能。这种类型的测试应该在建造全尺寸机器之前完成,因为通过风洞测试可以达到更好的设计。叶片元素动量理论 (BEMT) 通常用于小型风力涡轮机的设计,这种设计方法在很大程度上取决于精确的翼型数据的使用。因此,对于小型风力涡轮机,在适当的雷诺数下获取的高质量实验翼型数据对于准确设计和预测发电量是必不可少的。所呈现的数据适用于风洞
已经开发了一种可靠而紧凑的甲烷热解的化学机制,导致形成大型多环芳烃(PAH)分子。该模型设计用于研究碳纳米结构合成的研究,例如碳黑色和石墨烯片,包括烟灰生长动力学。用碳纳米结构合成的甲烷热解是一个两阶段的过程,其中CH 4转换为C 2 H 2的转化是乙炔PAH分子的生长。我们预先发送了一种准确描述两个阶段的化学机制。我们已经建立了一种紧凑而准确的化学机制,能够基于ABF1机制对甲烷热解的两个阶段进行建模,该机制通过Tao 2的机制扩展了最突出的反应途径,用于小型PAH分子和HACA途径,用于较大的PAH分子,用于较大的PAH分子,高达37个芳香环。通过比较多组可用的实验数据来验证所得机制。获得了两个过程的实验数据的良好一致性。在长时间的长期时间内,测试了该机理的性能,用于富含甲烷的混合物的热解,导致PAH分子的大量形成。表明,在化学机制中包含较大的PAH物种(最多A37)对于准确预测转化为PAH分子的碳的比例很重要,并且相应地,混合物中的乙烯烯烃的残留分数很重要。可应要求提供的机制文件。
基于基于E + E→σ +σ-和E + e + E-→σ-→σ-σ +过程,通过BESIII协作(在时间元素统治区域中,都可以使用vector meson ponditions contoction contoctions the vector n positions contoctions the vositions for the ecomence contector contoction n and the vector contector contoction n and positiment contector n the vector n positiments co. 帐户。 模型参数是从besiii实验数据中确定的,有关及时的有效形式| g e |从2.3864到3.02 GEV的σ +和σ-baryons的baryons。 发现,我们可以提供一个可用数据的定量描述,仅为一个可调模型参数。 然后,我们进行了对空格区域中电磁形式因子的分析,并评估了Hyperonsσ +和σ-的间距类型因子。 获得的σ +和σ-baryon的电磁形式因子与其他模型计算相当。基于E + E→σ +σ-和E + e + E-→σ-→σ-σ +过程,通过BESIII协作(在时间元素统治区域中,都可以使用vector meson ponditions contoction contoctions the vector n positions contoctions the vositions for the ecomence contector contoction n and the vector contector contoction n and positiment contector n the vector n positiments co. 帐户。模型参数是从besiii实验数据中确定的,有关及时的有效形式| g e |从2.3864到3.02 GEV的σ +和σ-baryons的baryons。发现,我们可以提供一个可用数据的定量描述,仅为一个可调模型参数。然后,我们进行了对空格区域中电磁形式因子的分析,并评估了Hyperonsσ +和σ-的间距类型因子。获得的σ +和σ-baryon的电磁形式因子与其他模型计算相当。
摘要广泛使用的达西定律指定流体流量的达西速度与驱动流动的压力梯度之间的线性关系。但是,研究表明,当压力梯度充分低时,在低渗透性多孔培养基(例如粘土和页岩)中,达西速度可以表现出非线性依赖性对压力梯度的依赖性。此phe-nomenon被称为低速性非darcian流或携带前流。本文对低渗透性多孔培养基中携带前流的理论,实验数据和建模方法进行了全面综述。审查首先概述了携带前流的基本机制,这些机制调节了独特特征,例如Darcy速度对压力梯度的非线性依赖性及其与流体 - 岩石相互作用的相关性。随后进行审查进行了详尽的汇编,对在各种低渗透性的土地材料中进行的实验研究进行了彻底的汇编,包括紧密的砂岩,页岩和粘土。接下来,审查了为了拟合和解释实验数据而开发的经验和理论模型和仿真方法。最后,审查强调了进行和解释携带前流实验的挑战,并提出了未来的研究方向。通过分析以前的实验研究,该综述旨在为寻求增强其对低渗透性土地材料中流体动态的研究人员和从业人员提供宝贵的资源。这提供了有关在众多天然和工程过程中应用前携带流量的应用,例如页岩油和天然气回收,低渗透性含水层中的污染物运输以及核废料的地质处理。
加速材料插入 (AIM) 计划提供了将材料开发周期缩短高达 50% 的机会,从而减少了新材料和新工艺所需的前置时间。该计划的成立是为了彻底改变设计师和材料工程师的互动方式,实现计算材料科学应用和与设计工程工具集成的飞跃,并创建一个设计/材料团队可以学习和借鉴先前开发成果的环境。AIM 系统的核心是设计师知识库,它提供了一个框架,用于管理实验数据、执行描述处理、微观结构、属性和可生产性的链接模型,以及计算系统预测的置信区间。
在各种军事和非军事应用中具有重要意义。机载传感器精度和状态估计算法是与性能方面相关的重要问题。我们的研究重点是 OktoKopter,它是成功的通用航空平台之一。多旋翼飞机配备了全球定位系统 (GPS)、指南针、高度控制和遥测等,因此这些功能使其功能强大且用途广泛。在本文中,我们首先提出一个传感器融合模型,然后对三种状态估计算法进行比较,即卡尔曼、扩展卡尔曼滤波器 (EKF) 和无迹卡尔曼滤波器 (UKF)。发现 UKF 的性能最好;结果与算法的理论概念和实际实验数据相吻合。
实验数据。在对 SS f M 俱乐部成员的调查中,受访者被问及他们使用连续建模的频率,用于各种任务,例如实验设计和数据处理。连续建模的最常见用途是更深入地了解正在建模的过程。这意味着参数和不确定性的确定并不是唯一需要关注的问题,并且需要在可能的情况下考虑其他现象。对其他现象的考虑在一定程度上促使人们研究“看起来正确”作为验证标准,因为许多感兴趣的现象的行为是近似的,而不是详细的。例如,实验经验通常会让人了解某些变量的实际极限,这有助于确定模型的正确性。
对飞机进行了研究。使用 VLAERO+ (一种涡格法商用计算机程序)计算了 Gossamer Albatross 的升力系数、阻力系数和力矩系数等气动数据,并将其与飞行试验数据进行了比较。对差异进行了分析和解释。尽管计算结果显示出与实验数据相似的趋势,但仍存在一些差异,这些差异可以用该方法的固有局限性来解释,例如线性和无粘性。不过,该程序允许通过加法和乘法因子进行某些校准。Gossamer 模型一旦校准,就可以放心地用于计算马赫数在 0.016 到 0.0248 之间、攻角在 -2 到 10 度之间的气动特性和稳定性分析。
我们通过确定关键领域、方向和含义,研究大型语言模型 (LLM) 在实验中增强科学实践的潜力。首先,我们讨论这些模型如何改进实验设计,包括改进引出措辞、编码实验和生成文档。其次,我们讨论使用 LLM 实施实验,重点是通过创建一致的体验、提高对指令的理解以及实时监控参与者的参与度来增强因果推理。第三,我们重点介绍 LLM 如何帮助分析实验数据,包括预处理、数据清理和其他分析任务,同时帮助审阅者和复制者调查研究。这些任务中的每一项都会提高报告准确发现的可能性。
基于相对论输运模型ART,利用MIT袋模型将强子状态方程扩展为具有相变,研究了相对论重离子碰撞中形成的致密核物质的相变特性。在束流能量为2、4、6和8 GeV/核子的Au + Au碰撞中,用不同的状态方程计算了质子的侧向和定向流。与现有的AGS实验数据相比,一级相变的边界大致被限制在2.5-4倍饱和密度范围内,温度约为64-94 MeV。这些约束对正在进行的RHIC束流能量扫描-II计划研究QCD物质相图很有用。