AFRL 空军研究实验室 AMM 制造模型 B 叶片 BTT 叶尖正时 CAD 计算机辅助设计 CARL 压缩机航空研究实验室 CFD 计算流体动力学 CMM 坐标测量机 CMS 部件模态综合 DOD 家用物体损坏 DOF 自由度 EO 发动机阶数 FEA 有限元分析 FEM 有限元模型 FMM 基本失谐模型 FOD 外来物体损坏 FRA 受迫响应分析 GMM 几何失谐模型 HCF 高周疲劳 HPC 高压压缩机 IBR 整体叶片转子 ICP 迭代最近点 LCF 低周疲劳 MMDA 改进模态域方法 MORPH 智能网格变形方法 PCA 主成分分析 PBS 参数化叶片研究 N 叶片数量 ND 节点直径 NSMS 非侵入应力测量系统 ROM 降阶模型 SDOF 单自由度 SWAT 正弦波分析技术 SNM 标称子集模式 TAF 调谐吸收器因子 TEFF 涡轮发动机疲劳设施 TWE 行波激励
摘要 人类大脑是我们进行交流的主要生物器官。大脑既是信息的发送者,又是信息的接收者,是我们与他人交流和互动的基本能力的基础。因此,传播学者可以通过研究大脑来更全面地了解传播现象。我们撰写本文的目的是通过以下方式向传播学者推广神经科学研究:(1)我们提供从神经角度研究传播的基本原理。(2)我们描述神经科学方法所带来的各种优势和挑战。(3)我们描述了传播学者进入该领域的三个不同的方法切入点。具体来说,我们说明了如何将神经科学测量作为因变量、介质或预测因子纳入传播研究中。然后,我们以前瞻性的视角结束了本文,展望了测量、分析和理论的未来发展,我们预计这些发展将对传播科学产生深远的影响。
摘要 随着机场资源不断扩展以满足日益增长的服务需求,有效利用地面基础设施对于确保运营效率越来越重要。运筹学研究已经产生了一些算法,为机场塔台管制员提供有关航班到达、离开和地面移动的最佳时间和顺序的指导。虽然这种决策支持系统有可能提高运营效率,但它们也可能影响用户的心理工作量、态势感知和任务绩效。这项工作旨在确定人类决策者在实验性机场地面移动控制任务中采用的绩效结果和策略,目的是确定增强以用户为中心的塔台管制决策支持系统的机会。为了应对这一挑战,30 名新手参与者解决了一组以游戏形式呈现的车辆路线问题,代表跑道管制员执行的机场地面移动任务。游戏在两个独立变量上有所不同,即网络地图布局(代表任务复杂性)和游戏目标(代表任务灵活性),而口头协议、视觉协议、任务表现、工作量和任务持续时间则被收集为因变量。逻辑回归分析显示,游戏目标和任务持续时间显著影响参与者确定游戏最佳解决方案的可能性,其中
基因,蛋白质和代谢产物被组织到广泛的网络中,使细胞能够反应,适应和通信其环境。此类网络的程度和复杂性可以阻碍阐明其结构和功能的尝试。为了解决这个问题,我们开发了一种使用系统的转录扰动来构建基因和蛋白质调节网络的一阶模型的方法。我们将此方法应用于大肠杆菌中SOS途径的9个基因子网,并获得了调节相互作用的准确模型。使用恢复的模型,我们正确识别了主要调节基因和直接介导子网中丝裂霉素C活性的基因。这种方法在实验和计算上可扩展,为阐明遗传网络的功能特性提供了一个新颖的框架,并确定了药理学化合物的作用机理。