摘要 本研究旨在确定自我提问策略在物理教学中培养独立思考能力的有效性。研究人员对约旦安曼学校第一中学科学班 (46) 名学生的立意样本进行了独立思考测试。采用了准实验方法。为了分析数据,使用了社会科学统计软件包 (SPSS)。研究表明,两组 (实验组和对照组) 的独立思考水平在统计学上存在显著差异,实验组表现更佳。研究建议根据自我提问策略准备和开发教学计划,并对不同年龄段和新变量的新样本进行类似研究。关键词:自我提问、独立思考、物理。
qudit是传统2级值的多级计算单元替代品。与Qubit相比,Qudit提供了更大的状态空间来存储和过程信息,因此可以降低电路复杂性,简化实验设置以及算法效率的增强。本评论提供了基于Qudit的量子计算的概述,涵盖了从电路构建,算法设计到实验方法的各种主题。我们首先讨论Qudit门通用性和各种Qudit门,包括Pi/8 Gate,交换门和多级别控制的门。然后,我们介绍了几种代表性量子算法的QUDIT版本,包括Deutsch-Jozsa算法,量子傅立叶变换和相位估计算法。最后,我们讨论了用于QUDIT计算的各种物理实现,例如光子平台,铁陷阱和核磁共振。
我们展示了一种在半导体微腔激光器中创建空间局部状态的实验方法。特别是,我们塑造了具有非共振的,脉冲的光泵的准二维微腔激光器的空间增益曲线,以创建由于增益和非线性损耗的平衡而存在的空间局部结构,称为增益拟散的孤子。我们直接探测了这些局部结构的超快形成动力学和衰减,表明它们是在比索秒时尺度上创建的,比激光腔孤子更快的数量级。使用复杂的Ginzburg – Landau模型来重建所有实验观察到的特征和动力学,该模型明确考虑了半导体中的载体密度动力学。
带有检查点抑制剂的抽象背景免疫疗法,尤其是那些针对编程的死亡受体1(PD-1)/PD-1配体(PD-L1)的免疫疗法,越来越多地被认为是恶性肿瘤的高度有希望的治疗方式。然而,限制了免疫检查点阻滞治疗在治疗胶质母细胞瘤(GBM)中的效率。因此,必须扩大我们对GBM免疫逃逸(IE)背后的分子机制的理解。进行蛋白质芯片分析以在PD-1抑制剂敏感或抗性GBM中异常表达的OMA1蛋白筛选。在此,采用了公共数据库和生物信息学分析来研究OMA1和PD-L1关系。然后,通过不同的实验方法在初级GBM细胞系中验证了这种预测的关系。在免疫抑制中研究OMA1背后的分子机制,采用了一系列实验方法,包括蛋白质印迹,共免疫沉淀(CO-IP),质谱法(MS),免疫荧光,免疫荧光,免疫组织,免疫组织化学和QRT-PCR。结果我们的发现表明,OMA1竞争性结合HSPA9以诱导线粒体并介导GBM的IE。来自TCGA的数据表明OMA1与免疫抑制之间存在显着相关性。OMA1促进了GBM患者的原代细胞中的PD-L1水平。接下来,在GBM原代细胞上进行的Co-IP和MS的结果表明OMA1与HSPA9相互作用并诱导线粒体。OMA1不仅通过增加线粒体DNA释放,还通过激活CGAS插入来促进CGAS插入活性。最终,已经发现OMA1通过调节PD-1结合和PD-L1介导的T细胞毒性来诱导GBM中的免疫逃避。结论OMA1/HSPA9/CGAS/PD-L1轴在我们的研究中被阐明为GBM中新鉴定的免疫治疗靶标。
基于规则的人工智能 (AI) 和机器学习 (ML) 工具为探索信息格局提供了强大的途径,以发现用于极端条件(例如高应变率、高 g 负载、高温)的新材料。这些方法为探索用于防护和杀伤力应用的材料的新领域提供了巨大的机会,尤其是当与允许更大、更丰富的数据集、计算工具和数据基础设施进行协作的新方法相结合时。广义上讲,AI/ML 可用于增强合成-加工-表征流程中的各个步骤,用于规模桥接以从更易处理的实验方法中提取更多信息,并用于指导更广泛的研究循环。
研究重型离子集合中产生的物质集体扩展的特性提供了一种独特的工具,可以更好地了解QCD的非扰动方面。需要从理论和实验方面输入。流体动力学量预测颗粒产生的各向异性,这是由于系统进化的初始状态下的不对称性。这些各向异性的系统学(能量,系统依赖性)的测量不仅可以验证理论思想,还可以确定未知元素,例如等离子体属性(EOS),主题过程。在这个主题中扩大我们的知识是The SIS的主要目标。实验方法用于提供对颗粒和反颗粒扩展中各向异性研究的见解,而理论方法则用于EOS研究。
研究重离子碰撞中产生的物质集体膨胀的性质为更好地理解 QCD 的非微扰方面提供了一个独特的工具。需要理论和实验两方面的投入。流体动力学计算预测粒子产生中的各向异性,这是系统演化初始状态不对称的结果。对这些各向异性的系统性(能量、系统依赖性)测量不仅可以验证理论想法,还可以确定未知元素,如等离子体特性(EoS)、热化过程。拓宽我们在这方面的知识是本论文的主要目标。实验方法用于深入了解粒子和反粒子膨胀的各向异性,而理论方法用于 EoS 研究。
原子物理学的最新发展使多体纠缠状态的实验生成能够提高量子传感器的性能,超过标准量子极限(SQL)。该极限是由量子调查的固有投影噪声施加的。在本角度文章中,我们描述了常用的实验方法,以创建多体纠缠状态以操作SQL以外的量子传感器。特别是,我们专注于将量子纠缠应用于最新的光原子时钟的潜力。此外,我们提出了最近开发的时间反转协议,这些方案使用具有高量子渔民信息的复杂状态,而无需子-SQL测量分辨率。我们讨论了基于此类协议的量子限制量子计量学的前景。
在量子光学领域,精确表征各种噪声源(例如散粒噪声、电噪声和真空噪声)对于推进光学测量技术和量子信息系统至关重要。本研究介绍了一种使用同差检测将光强度波动转换为电压信号的实验方法。然后借助示波器或频谱分析仪分析这些信号,以剖析噪声的时间和频谱特性。这些工具的集成使我们能够详细观察和区分量子噪声,从而提供对提高光学系统的准确性和效率至关重要的见解。该项目主要基于两部分:光学和电子学,我们成功完成了光学部分,而电气部分有待未来研究。这些发现为改进量子噪声表征奠定了基础,促进了下一代光学和量子信息技术的发展。
自最近发现以来,脑膜淋巴系统已重塑了我们对中枢神经系统(CNS)液体交换,废物清除,免疫细胞贩运和免疫特权的理解。脑膜淋巴管也已被证明可以在功能上改变神经疾病的结果及其对治疗的反应,包括脑肿瘤,炎症性疾病,例如多发性硬化症,中枢神经系统损伤,以及神经衰落的疾病,例如阿尔茨海默氏症和帕克森的疾病。在这篇综述中,我们讨论了脑膜淋巴细胞对神经系统疾病的贡献的最新证据,以及在这些疾病下操纵脑膜淋巴管的可用实验方法。最后,我们还讨论了利用脑膜淋巴管作为中枢神经系统治疗干预的主要目标,并可能导致脑部疾病的药物递送。