非平衡浴中示踪物扩散的一般问题在从细胞水平到地理长度尺度的广泛系统中都很重要。在本文中,我们重新讨论了这种系统的典型示例:一组小的被动颗粒浸没在无相互作用的偶极微游泳体的稀悬浮液中,这些微游泳体代表细菌或藻类。特别是,我们考虑了由于微游泳体流场对示踪物的持续平流而导致的热(布朗)扩散和流体动力学(主动)扩散之间的相互作用。以前,有人认为,即使是适量的布朗扩散也足以显著减少示踪物平流的持续时间,从而导致有效主动扩散系数 DA 的值与非布朗情况相比显著降低。在这里,我们通过大规模模拟和动力学理论表明,这种影响实际上只对那些实际上保持静止但仍搅动周围流体的微型游泳器(即所谓的振动器)具有实际意义。相比之下,对于生物微型游泳器悬浮液中相关的中等和高游泳速度值,布朗运动对 DA 的影响可以忽略不计,导致微型游泳器的平流和布朗运动的影响具有累加性。这一结论与文献中的先前结果形成对比,并鼓励重新解释最近对细菌悬浮液中不同大小的示踪颗粒的 DA 的实验测量。
多粒子纠缠态是量子信息处理和量子计量的重要资源。特别是,非高斯纠缠态被预测比高斯态具有更高的精密测量灵敏度。在计量灵敏度的基础上,传统的线性拉姆齐压缩参数 (RSP) 可以有效地表征高斯纠缠原子态,但对于范围更广、灵敏度更高的非高斯态则无效。这些复杂的非高斯纠缠态可以通过非线性压缩参数 (NLSP) 进行分类,它是 RSP 对非线性可观测量的推广,可通过 Fisher 信息识别。然而,NLSP 从未通过实验测量过。使用 19 量子比特可编程超导处理器,我们报告了在其非线性动力学过程中产生的多粒子纠缠态的表征。首先,我们选择 10 个量子比特,通过单次读取几个不同方向的集体自旋算子来测量 RSP 和 NLSP。然后,通过提取所有 19 个量子比特随时间演化状态的 Fisher 信息,我们观察到超过标准量子极限的 9.89 + 0.28 − 0.29 dB 的较大计量增益,这表明多粒子纠缠程度很高,可实现量子增强相位灵敏度。得益于高保真全控制和可寻址单次读取,具有互连量子比特的超导处理器为设计和基准测试可用于量子增强计量的非高斯纠缠态提供了理想平台。
开发量子技术需要控制和理解多体系统中量子信息的非平衡动力学。局部信息通过创建复杂的关联(称为信息扰乱)在系统中传播,因为此过程阻止从局部测量中提取信息。在这项工作中,我们开发了一个改编自固态 NMR 方法的模型来量化信息扰乱。扰乱是通过时间反转 Loschmidt 回波 (LE) 和多重量子相干实验来测量的,这些实验本质上包含缺陷。考虑到这些缺陷,我们推导出非时间序相关器 (OTOC) 的表达式,以基于测量信息传播的活跃自旋数量来量化可观察的信息扰乱。基于 OTOC 表达式,退相干效应自然是由 LE 实验中未反转项的影响引起的。退相干会导致可测量程度的信息扰乱的局部化。这些效应定义了可观测的活跃自旋数量的局部化簇大小,从而确定了动态平衡。我们将模型的预测与使用固态 NMR 实验进行的量子模拟进行了对比,该实验测量了具有受控缺陷的时间反转回波的信息扰乱。从实验数据确定的量子信息扰乱的动态和其局部化效应之间具有极好的定量一致性。所提出的模型和派生的 OTOC 为量化大型量子系统(超过 10 4 个自旋)的量子信息动态提供了工具,与本质上包含缺陷的实验实现一致。
摘要:本文对两种与电网连接的能源系统(传统和可再生能源)进行了技术和经济分析。调查使用实验测量所需负载和天气数据(太阳辐照度和环境温度)进行,测得的日能耗为 5.1 kWh,太阳辐照度的年平均值为 4.6 kWh/m 2 /天。模拟过程使用 MATLAB 和 HOMER 软件以 1 分钟的时间步长分辨率完成。针对两种能源系统方案(i)光伏/电网和(ii)柴油/电网提出的经济优化目标考虑了基于伊拉克市场和法规的经济方面和组件价格。柴油发电机在农村地区非常受欢迎,设计为与光伏系统在同一时间(仅在白天)工作。年运行时间为 4380 小时/年,发电量约为 2349 kWh/年,燃料消耗为 1826 升/年。结果表明,情景 (i) 中的光伏系统可产生约 7895 千瓦时的电能,情景 (ii) 中的柴油发电机可产生约 2346 千瓦时的电能。此外,情景 (i) 的平准化净现值成本为 1079 美元,能源成本约为 0.035 美元/千瓦时,而情景 (ii) 的平准化净现值成本为 12,287 美元,能源成本为 0.598 美元/千瓦时。与柴油发电机相比,强烈建议使用太阳能,因为太阳能成本最低,并且能将能源输送到电网。此外,它每年可捕获约 5295 千克二氧化碳。
我们提出了量子信念传播 (QBP),一种基于量子退火 (QA) 的低密度奇偶校验 (LDPC) 错误控制码解码器设计,该解码器在 Wi-Fi、卫星通信、移动蜂窝系统和数据存储系统中得到了广泛应用。QBP 将 LDPC 解码简化为离散优化问题,然后将简化的设计嵌入到量子退火硬件中。QBP 的嵌入设计可以在具有 2,048 个量子比特的真实最先进的 QA 硬件上支持块长度高达 420 位的 LDPC 码。我们在真实的量子退火器硬件上评估性能,对各种参数设置进行敏感性分析。我们的设计在高斯噪声无线信道上在 SNR 9 dB 下实现了 20 µ s 内的 10 − 8 比特错误率和 50 µ s 内的 1,500 字节帧错误率 10 − 6。进一步的实验测量了在真实无线信道上的性能,需要 30 µ s 才能在 SNR 15-20 dB 下实现 1,500 字节 99.99% 的帧传输率。QBP 的性能优于基于 FPGA 的软信念传播 LDPC 解码器,在 SNR 低 2.5–3.5 dB 时达到 10 − 8 的误码率和 10 − 6 的帧错误率。就局限性而言,QBP 目前无法在当前的 QA 处理器上实现实用的协议大小(例如 Wi-Fi、WiMax)LDPC 码。我们在本工作中的进一步研究提出了未来成本、吞吐量和 QA 硬件趋势方面的考虑。
在核反应实验中,测量的衰变能谱可以洞悉衰变系统的壳结构。然而,由于探测器分辨率和接受效应,从测量中提取底层物理信息具有挑战性。Richardson-Lucy (RL) 算法是一种常用于光学的去模糊方法,已被证明是一种成功的图像恢复技术,该算法被应用于我们的实验核物理数据。该方法的唯一输入是观察到的能谱和探测器的响应矩阵(也称为传输矩阵)。我们证明该技术可以帮助从测量的衰变能谱中获取有关粒子非结合系统壳结构的信息,而这些信息无法通过卡方拟合等传统方法立即获取。出于类似的目的,我们开发了一个机器学习模型,该模型使用深度神经网络 (DNN) 分类器从测量的衰变能谱中识别共振状态。我们在模拟数据和实验测量中测试了这两种方法的性能。然后,我们将这两种算法应用于通过不变质谱测量的 26 O → 24 O + n + n 衰变能谱。使用 RL 算法对测量的衰变能谱进行去模糊处理后恢复的共振状态与 DNN 分类器发现的状态一致。去模糊处理和 DNN 方法均表明 26 O 的原始衰变能谱在约 0.15 MeV、1.50 MeV 和 5.00 MeV 处出现三个峰,半宽分别为 0.29 MeV、0.80 MeV 和 1.85 MeV。
从实验测量中获得的云云中非球体气泡与起泡的冲击之间的复杂耦合相互作用极具挑战性。它需要通过受监视的气泡动力学同时监测空化云中时空演化的冲击波。在本报告中,我们复制并扩展了[Gluzman和Thomas,2022a]的基于计算机视觉(CV)的数据处理代码,以通过新的冲击波检测功能从高速影像记录中获得泡泡检测,以获取有关冲击波进化的有价值数据,以获得冲击形态的相互作用及其与它们的c耦合与非cavity Cavity vlow的相互作用。为了完成这项任务,我们利用了[Gluzman和Thomas,2022b]提出的增强的梯度阴影技术,以检测充气的空洞流中的冲击波存在,我们将其与CV代码BLOB分析程序相结合,以检测和表征与Bubbles的空间 - 临时型临时型时间变化。我们首先将复制的检测代码与[Gluzman和Thomas,2022a]的实验结果进行比较,以表征仅在CD喷嘴流中的气泡破裂运动学。然后,我们验证了我们在充气的cd-nozzzle中的充气填充流中报告的结果,并通过[Gluzman and Thomas,2022b]报告的结果来获取新的数据,以获取有关冲击波形态的新数据,并与注入的气泡相互互动,这对新型模型具有高度的预测液化性物质,这些模型具有高度的重要性。
迷人的魅力,美丽的底部和夸克 - 格鲁恩等离子体在大型强调对撞机时代Santosh K. Das 1和Raghunath Sahoo 2摘要:在通过大爆炸创造了我们宇宙的几微秒之后,原始物质被认为是Matter-Matter Matter Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-tocark和Gluons and Gluons and Gluons of Corcark和Gluons的汤。这将在实验室中通过以超相关速度碰撞重核来创建。可以在相对论重的重离子撞机(RHIC),美国纽约,纽约,美国纽约州布鲁克哈文国家实验室和大型的Hadron Collider(LHC)的Quark和Gluons的等离子体,称为Quark-Gluon等离子体(QGP)。重的夸克,即魅力和底部夸克,被认为是表征QGP的新型探针,因此被认为是量子染色体动力学(QCD)物质。重型夸克传输系数在理解QGP的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克传输系数,这是现象学研究的关键成分,它们有助于解散不同的能量损失机制。我们对QGP中的重夸克阻力和扩散系数进行了总体视角,并讨论了它们的潜力,作为解散不同的强调机制的探针,并探测了在非中央重型离子碰撞中产生的初始电磁场。对未来测量结果进行了实验观点,并特别强调了重型风味,这是新技术发展的下一代探针。关键词:大爆炸,夸克 - 杜伦等离子体,重型离子碰撞,重型风味
摘要:我们在自由衰减跌落试验中研究了球形浮标的升沉运动。采用综合方法研究浮标的振动,包括实验测量和互补数值模拟。实验是在配备一系列高速运动捕捉摄像机和一组高精度波浪仪的波浪池中进行的。模拟包括三组复杂程度不同的计算。具体来说,在一组计算中,流体体积 (VOF) 方法用于在重叠网格上求解不可压缩的两相 Navier-Stokes 方程,而其他组中的计算基于 Cummins 和质量弹簧阻尼器模型,这两个模型都植根于线性势流理论。实验数据与 VOF 模拟结果具有很好的一致性。虽然准确性较低,但两个降阶模型的预测也被发现非常可信。关于浮标的运动,获得的结果表明,在从大约等于其静态平衡吃水的高度(约为其半径的 60%)释放后,浮标经历了近谐波阻尼振动。进行的分析表明,浮标的吃水长度对振动的频率和衰减率有很大的影响。例如,与平衡状态下半浸没的相同尺寸的球形浮标(即吃水量等于半径)相比,测试浮标的振荡周期大约短 20%,并且其振荡幅度衰减速度几乎快两倍。总体而言,本研究为浮球的运动响应提供了更多见解,可用于优化浮标设计以实现能量提取。
非线性介电元面积提供了一种有希望的方法来控制和操纵纳米级的频率转换过程,从而促进了基础研究的进步以及在光子学,激光和感应中的新实践应用的发展。在这里,我们采用了由中心的非定形硅制成的对称性交叉的元面积,以共同增强二阶和三阶非线性光学响应。在连续和引导模式的共振中利用光学准结合状态的丰富物理学,我们通过严格的数值计算全面研究表面和批量效应对第二谐波产生(SHG)的相对贡献,以及对来自meta-atoms的第三谐波发电(THG)的大量贡献。接下来,我们在实验上实现了具有高质量因素的特殊共振,这极大地增强了光 - 互动,导致SHG增强量约550倍,THG增加了近5000倍。观察到理论预测与实验测量之间的良好一致性。为了对所研究的非线性光学过程的物理学进行更深入的见解,我们进一步研究了非线性发射与跨表面的结构不对称之间的关系,并揭示了由线性敏锐的共振产生的产生的谐波信号非常依赖于元元素的非元元素。我们的工作提出了一项富有成果的策略,以增强谐波产生并有效地控制全dielectric Metasurfaces的不同顺序谐波,从而能够发展有效的有效的主动光子Nan-osevices。