YMN 6 SN 6由两种类型的基于Mn的基于MN的kagome平面,它们沿着具有复杂磁相互作用的C轴堆叠。我们报告了从铁磁(FM)中的YMN 6 SN 6中进行的自旋重建,以组合两种不一致的自旋螺旋(SSS),这些螺旋螺旋(SSS)源自两种不同类型的Mn Kagome平面,由沿C-轴的沮丧的磁性交换驱动,并包括Hubbard u。不稳定的SSS的螺距角和波矢量约为89。3◦和〜(0 0 0.248),与实验非常吻合。我们采用通过交换相互作用构建的有效模型的哈密顿式模型来捕获两种不稳定的SSS的实验性观察到的非效法性质,这也解释了由于与相关性的抗fiferromagntic自旋交换而引起的FM-SS交叉。我们通过计算拓扑不变性和浆果曲率pro文件,进一步报告了在YMN 6 SN 6的不相称的SS相中具有自旋轨道耦合的拓扑镁的存在。在73 MEV匹配的能量景观中,狄拉克木元的位置与另一个实验报告。我们通过突出YMN 6 SN 6中的实验特征来证明结果的准确性。
I. i ntroduction电线扭曲或缺乏能量产生,发生在农村地区或灾难或自然灾害中,是通信线的最重大责任或不利之处。要解决这些问题,我们需要一个可再生能源,该能源每周7天每天24小时运行。这款太阳能电源非常独特。它将太阳能转换为电力,并有助于手机进行通信,这使其在自然灾难和停电期间至关重要。太阳能充电器的开发从基本层面从焊接和制作面板等等基本层面等。计划在明亮的阳光下使用6伏的伏特充电器,并使用调节器逐渐降至5伏。在报告中,注意到移动充电器的详细实验特征。太阳能是直接由太阳产生并在其他地方(通常是地球)收集的能量。太阳通过热核过程创造了其能量。该过程产生热和电磁辐射。只有一小部分产生的总辐射到达地球。确实到达地球的辐射是当今几乎每种类型的能量的间接来源。确实到达地球的辐射是当今几乎每种类型的能量的间接来源。例外是地热能,核裂变和融合。甚至化石燃料都归功于太阳。他们曾经是生命的生物和动物,他们的生命依赖太阳。可以间接提供更多。世界上大部分所需的能量可以直接通过太阳能提供。将检查这样做的实用性,以及收益和缺点。此外,将注意到当前使用太阳能。
拓扑绝缘子和超导体支持扩展的表面状态,以防止静态疾病的本地化作用。具体而言,在属于对称类A,AI和AII的Wigner-Dyson绝缘子中,通过光流的机理机制,延长的表面状态的带连续连接到同样的扩展式散装状态。在这项工作中,我们表明,大多数非官方 - 戴森拓扑超导体和手性拓扑绝缘子都没有这种机制。在这些系统中,精确有一个点,带有延伸状态,频段的中心e¼0。远离它,状态是空间定位的,也可以通过添加空间局部电位来制作。将AIII类和蜿蜒数量ν¼1中的三维绝缘子作为范式案例研究,我们讨论了这种现象背后的物理原理及其方法论和应用后果。尤其是我们表明,在表面状态描述中的低能量dirac近似可能是危险的,因为它们倾向于掩盖本地性现象。我们还确定了根据浆果曲率定义的标志物是晶格模型中状态定位程度的度量,并通过广泛的数值模拟来支持我们的分析预测。作为我们研究的一部分,我们确定了可能区分运输或隧道光谱中这些不同替代方案的可能实验特征。这项工作的一个主要结论是,非官方 - 迪森拓扑绝缘子的表面现象学比其Wigner-Dyson兄弟姐妹的表面现象学得多,极限限制是光谱范围的量子临界临界临界)所有状态的量子批判性地定位,除了在E¼0关键点外。
30.1 理论宇宙射线 (CR) 是遍布宇宙的非热粒子群。它们的显著特征可以从其主要的观测特性中推断出来:光谱、成分和到达方向。对于带电 CR,能量从几十 MeV 到接近 1 ZeV,强度在 1 GeV 以上为 ∼ 104 m − 2 s − 1 sr − 1,但差分谱随能量 E 急剧下降,遵循幂律依赖性 E − γ。最显著的光谱特征是在几个 PeV 处的“膝盖”,其中谱指数 γ 从 ∼ 2.7 变为 ∼ 3,“第二个膝盖”在 ∼ 100 PeV 处变为 ∼ 3.3 和在几个 EeV 处的“脚踝”,γ 变为 ∼ 2。 5. 通量在几十 EeV 以上被大大抑制。(有关光谱特征的更详细讨论可参见下文第 30.2.1 和 30.2.2 节。)带电 CR 主要由质子、氦和其他原子核以及电子、正电子和反质子组成。到达方向大多是各向同性的,但在膝点以下和周围,由于源的分布和银河系磁场的特性,观察到有趣的 O(10-4...10-3)各向异性,在最高能量下达到 ∼O(10-1)。伽马射线可分解为来自天体物理源的伽马射线(50 MeV 以上约 6660 [ 1 ],TeV 能量下约 300 [ 2 , 3 ]),以及来自银河系和河外星系的弥散通量,主要表现出对能量的幂律依赖性。高能中微子的观测打开了一扇新的窗户;虽然分布基本上是各向同性的,但已经发现了两个河外星系源以及来自银河系平面的贡献的证据。带电 CR、弥散伽马射线和中微子的能谱如图 30.1 所示。对带电宇宙射线、伽马射线和中微子以及引力波的综合观测(见第 21.2.3 节)为我们了解最极端的天体物理环境提供了有价值的见解,这被称为多信使天体物理学。将所有物种的贡献相加,可得到全粒子谱。虽然长期以来人们认为它是一个没有特征的幂律,直到几个 PeV 的膝盖,但现在人们认识到它具有更多的结构,反映了各个物种的特征。这些特征包含有关宇宙射线加速和传输的重要信息。使用的能量变量是动能 E,即每个核子的动能,对于质量数为 A 的粒子,E n = E/A,或对于电荷数为 Z 的粒子,刚度 R ≡ pc/ ( Ze )(以伏特为单位),p 是粒子的动量;术语“刚度”是指在磁场 B 中抵抗偏转的能力:刚度低(高)的粒子具有小(大)的回旋半径 rg = R /B 。动能与量热仪器的实验特征密切相关,而刚度则是光谱仪器最自然的特征。还要注意,相对论性原子核的能量损失很小,它们的传输由磁场决定,因此它只取决于刚度。核子强度 J 也称为弥散通量,是通过能量在区间 [ E, E + d E ] 内的粒子的微分数 d N 来定义的,这些粒子在时间 dt 内从立体角 d Ω 穿过面积 d A:d N = J d E d A d Ω dt 。其各向同性部分与微分密度 ψ = (4 π/v ) J 有关,v 为粒子速度,与相空间密度 f 有关,即 J = p 2 f 。注意,强度也可以根据每个核子的粒子能量或刚度来定义。为了强调这一点,强度通常写为 d J/ d E 、d J/ d En 或 d J/ d R 。在探测 CR 方面,有两类技术 [ 4 ]。直接观测(见第 30.2.1 节)利用粒子物理探测器(例如跟踪器、光谱仪和量热仪)中的 CR 相互作用。鉴于此类仪器的曝光有限且光谱急剧下降,目前仅在低于 ∼ 100 TeV 时才切合实际。在间接观测(见第 30.2.2 节)中,
基于石墨烯的样品显示量子厅制度1-16中的相关阶段丰富。奇数和均匀的分数量子霍尔状态,在涉及石墨烯 - 己酮氮化硼的样品中已经实现了分数Chern绝缘子。同样感兴趣的是双层样品中的现场诱导的激子冷凝物。已经指出,AB堆叠(Bernal)双层石墨烯(BLG)系统具有方便的参数,可以通过实验调整:除了电子密度和外部施加的磁力纤维外,还可以进行实验调整。由于几个量子数的结合,BLG的中央兰道水平具有将近八倍的变性:普通旋转,山谷的自由度和轨道退化。这些级别中排序的模式是非常丰富而复杂的。已经表明,分数量子霍尔状态17中存在可调相变。电偏置直接控制轨道水平之间的分裂和电子之间的库仑相互作用也受到外部施加磁场的值以及偏置的影响。对整数量子厅状态进行了详细研究,已在这些系统18上进行,并表明适当的紧密结合模型可以捕获水平顺序。最近的进步导致观察到许多分数状态以及它们之间的过渡。这意味着我们可以使用一个物理系统,在该系统中,我们可以调节参数影响分数量子霍尔物理学19-27。在GAAS中的二维电子系统中,众所周知,不可压力的电子液体与电子晶体(所谓的Wigner晶体)之间存在竞争。对于最低的Landau水平的填充因子ν= 1 /3,具有库仑相互作用的电子系统的基态是一种不可压缩的液体,其特性由Laughlin波函数28很好地描述,仅针对小小的细小因素,即基态状态为晶体状态29。确定这些阶段之间的精确边界已证明了困难的问题30。晶体状态在降低温度时以纵向电阻的不同而显示为绝缘状态。当一个降低填充因子时,有实验证据是Wigner晶体重新进入的实验证据。晶体状态的研究很困难,因为破坏了分数量子霍尔液体所需的磁场值很大。晶体状态不是唯一与液态的竞争者。在较高的Landau水平上,已知电子系统还可能形成所谓的条纹或气泡相。作为Wigner Crystal,这种状态破坏了翻译对称性,并且认为它们处于截然不同的物质状态而没有拓扑顺序。他们的实验特征是具有其他各向异性特性的绝缘行为。我们注意到,在二维GAAS电子或孔系统中31–35在几个多体基础状态之间存在丰富的竞争,并且可以通过调谐门电位在1/3处稳定Wigner晶体。石墨烯系统是研究此类竞争阶段的另一个领域,特别是由于其可调性,AB堆叠了双层石墨烯。也已经知道,与较高的Landau水平混合会使竞争偏向Wigner Crystal状态。调整BLG系统以获得n = 0和n = 1特征的Landau水平的退化,可以看作是Landau级别混合的极端例子,尽管没有n>1。因此,可以调整Laughlin State和Wigner Crystal之间的竞争是合理的。在本文中,我们研究了对填充因子ν= 1 /3和ν= 2 /3发生的不可压缩量子霍尔的状态,当系统完全山谷以及在AB堆叠的双层石墨烯系统中旋转极化。有趣的物理学现在是从轨道特征n = 0和n = 1的水平的穿越中出现的。根据目前对级别订购的知识,这应该发生在接近ν= - 3的载荷的中心八位。电子形成一个有效的两个组件系统,具有可调的各向异性相互作用。