摘要 人工智能 (AI) 算法甚至在美学等创造性领域也取得了令人瞩目的成就。然而,机器学习 (ML) 社区之外的人是否能够充分解释或同意他们的结果,特别是在这种高度主观的领域,受到质疑。在本文中,我们试图了解不同的用户社区如何在主观领域推理 AI 算法结果。我们设计了 AI Mirror,这是一个研究探测器,可以告诉用户算法预测的照片美学分数。我们对该系统进行了用户研究,共有来自三个不同群体的 18 名参与者:AI/ML 专家、领域专家(摄影师)和普通公众成员。他们通过出声思考、调查和访谈等方式执行了拍照和推理 AI Mirror 预测算法的任务。结果表明:(1)用户使用自己特定群体的专业知识来理解 AI;(2)用户采用各种策略来缩小他们的判断与 AI 预测之间的差距;(3)用户的想法和 AI 预测之间的差异与用户对 AI 的可解释性和合理性的感知呈负相关。我们还讨论了主观领域中 AI 注入系统的设计考虑因素。
人类和现在的计算机可以从感官事件中得出主观评价,尽管这种转化过程本质上是未知的。在这项研究中,我们通过将卷积神经网络 (CNN) 与人类的相应表征进行比较,阐明了未知的神经机制。具体而言,我们优化了 CNN 以预测绘画的审美评价,并通过多体素模式分析研究了 CNN 表征与大脑活动之间的关系。初级视觉皮层和高级关联皮层活动分别类似于浅层 CNN 和深层 CNN 中的计算。因此,视觉到价值的转换被证明是一个分层过程,与连接单模态到跨模态大脑区域(即默认模式网络)的主要梯度一致。额叶和顶叶皮层的活动由目标驱动的 CNN 近似。因此,可以通过与大脑活动的对应关系来理解和可视化 CNN 隐藏层的表征——促进人工智能与神经科学之间的相似性。